Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent

Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications chemistry 2019-08, Vol.2 (1), Article 100
Hauptverfasser: Burg, Stephanie L., Washington, Adam, Coles, David M., Bianco, Antonino, McLoughlin, Daragh, Mykhaylyk, Oleksandr O., Villanova, Julie, Dennison, Andrew J. C., Hill, Christopher J., Vukusic, Pete, Doak, Scott, Martin, Simon J., Hutchings, Mark, Parnell, Steven R., Vasilev, Cvetelin, Clarke, Nigel, Ryan, Anthony J., Furnass, Will, Croucher, Mike, Dalgliesh, Robert M., Prevost, Sylvain, Dattani, Rajeev, Parker, Andrew, Jones, Richard A. L., Fairclough, J. Patrick A., Parnell, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Communications chemistry
container_volume 2
creator Burg, Stephanie L.
Washington, Adam
Coles, David M.
Bianco, Antonino
McLoughlin, Daragh
Mykhaylyk, Oleksandr O.
Villanova, Julie
Dennison, Andrew J. C.
Hill, Christopher J.
Vukusic, Pete
Doak, Scott
Martin, Simon J.
Hutchings, Mark
Parnell, Steven R.
Vasilev, Cvetelin
Clarke, Nigel
Ryan, Anthony J.
Furnass, Will
Croucher, Mike
Dalgliesh, Robert M.
Prevost, Sylvain
Dattani, Rajeev
Parker, Andrew
Jones, Richard A. L.
Fairclough, J. Patrick A.
Parnell, Andrew J.
description Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma . Chitin-filling fractions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma , indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation. White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles, Cyphochilus and L. stigma , and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.
doi_str_mv 10.1038/s42004-019-0202-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389675145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389675145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOOg8gLuA62h-22Ypg38w4EbXIW1vpxk6bSfJKLPzHXxDn8SMFXTj6h443zkXDkIXjF4xKorrIDmlklCmCeWUk-IIzbjQmogs08d_9Cmah7CmNFFM5HkxQ7B0252rP98_um-Bx9YGwAFG6210Q483gx_boRtWDgJ2Pd510Vvy1roIuASIXaIr2yXT9jW2OOz72EJ0FYZU-JqcPp6jk8Z2AeY_9wy93N0-Lx7I8un-cXGzJJVQOpLaMgaFymqhy0IxqgSTQjWNLKsSmLK5laWCrCyFpYpnOqul5cBVIeuMMa7FGbqcekc_bHcQolkPO9-nl4aLQme5YlIlik1U5YcQPDRm9G5j_d4wag6DmmlQkwY1h0FNkTJ8yoTE9ivwv83_h74AYlh6NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389675145</pqid></control><display><type>article</type><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</creator><creatorcontrib>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</creatorcontrib><description>Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma . Chitin-filling fractions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma , indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation. White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles, Cyphochilus and L. stigma , and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-019-0202-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 14/63 ; 639/301/54/989 ; 639/638/455/953 ; 639/925/357/537 ; Beetles ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chitin ; Finite difference method ; Liquid phases ; Morphology ; Nanostructure ; Phase separation ; Reflectance curves ; Simulation ; Spinodal decomposition ; Stigma ; White light ; X-ray scattering</subject><ispartof>Communications chemistry, 2019-08, Vol.2 (1), Article 100</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</citedby><cites>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</cites><orcidid>0000-0003-4110-8328 ; 0000-0002-1675-5219 ; 0000-0001-7870-9843 ; 0000-0002-6814-679X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42004-019-0202-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s42004-019-0202-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Burg, Stephanie L.</creatorcontrib><creatorcontrib>Washington, Adam</creatorcontrib><creatorcontrib>Coles, David M.</creatorcontrib><creatorcontrib>Bianco, Antonino</creatorcontrib><creatorcontrib>McLoughlin, Daragh</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Dennison, Andrew J. C.</creatorcontrib><creatorcontrib>Hill, Christopher J.</creatorcontrib><creatorcontrib>Vukusic, Pete</creatorcontrib><creatorcontrib>Doak, Scott</creatorcontrib><creatorcontrib>Martin, Simon J.</creatorcontrib><creatorcontrib>Hutchings, Mark</creatorcontrib><creatorcontrib>Parnell, Steven R.</creatorcontrib><creatorcontrib>Vasilev, Cvetelin</creatorcontrib><creatorcontrib>Clarke, Nigel</creatorcontrib><creatorcontrib>Ryan, Anthony J.</creatorcontrib><creatorcontrib>Furnass, Will</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Dalgliesh, Robert M.</creatorcontrib><creatorcontrib>Prevost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Parker, Andrew</creatorcontrib><creatorcontrib>Jones, Richard A. L.</creatorcontrib><creatorcontrib>Fairclough, J. Patrick A.</creatorcontrib><creatorcontrib>Parnell, Andrew J.</creatorcontrib><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><description>Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma . Chitin-filling fractions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma , indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation. White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles, Cyphochilus and L. stigma , and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</description><subject>14/28</subject><subject>14/63</subject><subject>639/301/54/989</subject><subject>639/638/455/953</subject><subject>639/925/357/537</subject><subject>Beetles</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chitin</subject><subject>Finite difference method</subject><subject>Liquid phases</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Phase separation</subject><subject>Reflectance curves</subject><subject>Simulation</subject><subject>Spinodal decomposition</subject><subject>Stigma</subject><subject>White light</subject><subject>X-ray scattering</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOOg8gLuA62h-22Ypg38w4EbXIW1vpxk6bSfJKLPzHXxDn8SMFXTj6h443zkXDkIXjF4xKorrIDmlklCmCeWUk-IIzbjQmogs08d_9Cmah7CmNFFM5HkxQ7B0252rP98_um-Bx9YGwAFG6210Q483gx_boRtWDgJ2Pd510Vvy1roIuASIXaIr2yXT9jW2OOz72EJ0FYZU-JqcPp6jk8Z2AeY_9wy93N0-Lx7I8un-cXGzJJVQOpLaMgaFymqhy0IxqgSTQjWNLKsSmLK5laWCrCyFpYpnOqul5cBVIeuMMa7FGbqcekc_bHcQolkPO9-nl4aLQme5YlIlik1U5YcQPDRm9G5j_d4wag6DmmlQkwY1h0FNkTJ8yoTE9ivwv83_h74AYlh6NQ</recordid><startdate>20190829</startdate><enddate>20190829</enddate><creator>Burg, Stephanie L.</creator><creator>Washington, Adam</creator><creator>Coles, David M.</creator><creator>Bianco, Antonino</creator><creator>McLoughlin, Daragh</creator><creator>Mykhaylyk, Oleksandr O.</creator><creator>Villanova, Julie</creator><creator>Dennison, Andrew J. C.</creator><creator>Hill, Christopher J.</creator><creator>Vukusic, Pete</creator><creator>Doak, Scott</creator><creator>Martin, Simon J.</creator><creator>Hutchings, Mark</creator><creator>Parnell, Steven R.</creator><creator>Vasilev, Cvetelin</creator><creator>Clarke, Nigel</creator><creator>Ryan, Anthony J.</creator><creator>Furnass, Will</creator><creator>Croucher, Mike</creator><creator>Dalgliesh, Robert M.</creator><creator>Prevost, Sylvain</creator><creator>Dattani, Rajeev</creator><creator>Parker, Andrew</creator><creator>Jones, Richard A. L.</creator><creator>Fairclough, J. Patrick A.</creator><creator>Parnell, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-1675-5219</orcidid><orcidid>https://orcid.org/0000-0001-7870-9843</orcidid><orcidid>https://orcid.org/0000-0002-6814-679X</orcidid></search><sort><creationdate>20190829</creationdate><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><author>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/28</topic><topic>14/63</topic><topic>639/301/54/989</topic><topic>639/638/455/953</topic><topic>639/925/357/537</topic><topic>Beetles</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chitin</topic><topic>Finite difference method</topic><topic>Liquid phases</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Phase separation</topic><topic>Reflectance curves</topic><topic>Simulation</topic><topic>Spinodal decomposition</topic><topic>Stigma</topic><topic>White light</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burg, Stephanie L.</creatorcontrib><creatorcontrib>Washington, Adam</creatorcontrib><creatorcontrib>Coles, David M.</creatorcontrib><creatorcontrib>Bianco, Antonino</creatorcontrib><creatorcontrib>McLoughlin, Daragh</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Dennison, Andrew J. C.</creatorcontrib><creatorcontrib>Hill, Christopher J.</creatorcontrib><creatorcontrib>Vukusic, Pete</creatorcontrib><creatorcontrib>Doak, Scott</creatorcontrib><creatorcontrib>Martin, Simon J.</creatorcontrib><creatorcontrib>Hutchings, Mark</creatorcontrib><creatorcontrib>Parnell, Steven R.</creatorcontrib><creatorcontrib>Vasilev, Cvetelin</creatorcontrib><creatorcontrib>Clarke, Nigel</creatorcontrib><creatorcontrib>Ryan, Anthony J.</creatorcontrib><creatorcontrib>Furnass, Will</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Dalgliesh, Robert M.</creatorcontrib><creatorcontrib>Prevost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Parker, Andrew</creatorcontrib><creatorcontrib>Jones, Richard A. L.</creatorcontrib><creatorcontrib>Fairclough, J. Patrick A.</creatorcontrib><creatorcontrib>Parnell, Andrew J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burg, Stephanie L.</au><au>Washington, Adam</au><au>Coles, David M.</au><au>Bianco, Antonino</au><au>McLoughlin, Daragh</au><au>Mykhaylyk, Oleksandr O.</au><au>Villanova, Julie</au><au>Dennison, Andrew J. C.</au><au>Hill, Christopher J.</au><au>Vukusic, Pete</au><au>Doak, Scott</au><au>Martin, Simon J.</au><au>Hutchings, Mark</au><au>Parnell, Steven R.</au><au>Vasilev, Cvetelin</au><au>Clarke, Nigel</au><au>Ryan, Anthony J.</au><au>Furnass, Will</au><au>Croucher, Mike</au><au>Dalgliesh, Robert M.</au><au>Prevost, Sylvain</au><au>Dattani, Rajeev</au><au>Parker, Andrew</au><au>Jones, Richard A. L.</au><au>Fairclough, J. Patrick A.</au><au>Parnell, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><date>2019-08-29</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><artnum>100</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma . Chitin-filling fractions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma , indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation. White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles, Cyphochilus and L. stigma , and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42004-019-0202-8</doi><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-1675-5219</orcidid><orcidid>https://orcid.org/0000-0001-7870-9843</orcidid><orcidid>https://orcid.org/0000-0002-6814-679X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3669
ispartof Communications chemistry, 2019-08, Vol.2 (1), Article 100
issn 2399-3669
2399-3669
language eng
recordid cdi_proquest_journals_2389675145
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects 14/28
14/63
639/301/54/989
639/638/455/953
639/925/357/537
Beetles
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chitin
Finite difference method
Liquid phases
Morphology
Nanostructure
Phase separation
Reflectance curves
Simulation
Spinodal decomposition
Stigma
White light
X-ray scattering
title Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%93liquid%20phase%20separation%20morphologies%20in%20ultra-white%20beetle%20scales%20and%20a%20synthetic%20equivalent&rft.jtitle=Communications%20chemistry&rft.au=Burg,%20Stephanie%20L.&rft.date=2019-08-29&rft.volume=2&rft.issue=1&rft.artnum=100&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-019-0202-8&rft_dat=%3Cproquest_cross%3E2389675145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389675145&rft_id=info:pmid/&rfr_iscdi=true