Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent
Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white...
Gespeichert in:
Veröffentlicht in: | Communications chemistry 2019-08, Vol.2 (1), Article 100 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Communications chemistry |
container_volume | 2 |
creator | Burg, Stephanie L. Washington, Adam Coles, David M. Bianco, Antonino McLoughlin, Daragh Mykhaylyk, Oleksandr O. Villanova, Julie Dennison, Andrew J. C. Hill, Christopher J. Vukusic, Pete Doak, Scott Martin, Simon J. Hutchings, Mark Parnell, Steven R. Vasilev, Cvetelin Clarke, Nigel Ryan, Anthony J. Furnass, Will Croucher, Mike Dalgliesh, Robert M. Prevost, Sylvain Dattani, Rajeev Parker, Andrew Jones, Richard A. L. Fairclough, J. Patrick A. Parnell, Andrew J. |
description | Cyphochilus
beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of
Cyphochilus
and
Lepidiota stigma
. Chitin-filling fractions are found to be 31 ± 2% for
Cyphochilus
and 34 ± 1% for
Lepidiota stigma
, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation.
White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles,
Cyphochilus
and
L. stigma
, and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism. |
doi_str_mv | 10.1038/s42004-019-0202-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389675145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389675145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOOg8gLuA62h-22Ypg38w4EbXIW1vpxk6bSfJKLPzHXxDn8SMFXTj6h443zkXDkIXjF4xKorrIDmlklCmCeWUk-IIzbjQmogs08d_9Cmah7CmNFFM5HkxQ7B0252rP98_um-Bx9YGwAFG6210Q483gx_boRtWDgJ2Pd510Vvy1roIuASIXaIr2yXT9jW2OOz72EJ0FYZU-JqcPp6jk8Z2AeY_9wy93N0-Lx7I8un-cXGzJJVQOpLaMgaFymqhy0IxqgSTQjWNLKsSmLK5laWCrCyFpYpnOqul5cBVIeuMMa7FGbqcekc_bHcQolkPO9-nl4aLQme5YlIlik1U5YcQPDRm9G5j_d4wag6DmmlQkwY1h0FNkTJ8yoTE9ivwv83_h74AYlh6NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389675145</pqid></control><display><type>article</type><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</creator><creatorcontrib>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</creatorcontrib><description>Cyphochilus
beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of
Cyphochilus
and
Lepidiota stigma
. Chitin-filling fractions are found to be 31 ± 2% for
Cyphochilus
and 34 ± 1% for
Lepidiota stigma
, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation.
White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles,
Cyphochilus
and
L. stigma
, and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-019-0202-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 14/63 ; 639/301/54/989 ; 639/638/455/953 ; 639/925/357/537 ; Beetles ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chitin ; Finite difference method ; Liquid phases ; Morphology ; Nanostructure ; Phase separation ; Reflectance curves ; Simulation ; Spinodal decomposition ; Stigma ; White light ; X-ray scattering</subject><ispartof>Communications chemistry, 2019-08, Vol.2 (1), Article 100</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</citedby><cites>FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</cites><orcidid>0000-0003-4110-8328 ; 0000-0002-1675-5219 ; 0000-0001-7870-9843 ; 0000-0002-6814-679X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42004-019-0202-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s42004-019-0202-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Burg, Stephanie L.</creatorcontrib><creatorcontrib>Washington, Adam</creatorcontrib><creatorcontrib>Coles, David M.</creatorcontrib><creatorcontrib>Bianco, Antonino</creatorcontrib><creatorcontrib>McLoughlin, Daragh</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Dennison, Andrew J. C.</creatorcontrib><creatorcontrib>Hill, Christopher J.</creatorcontrib><creatorcontrib>Vukusic, Pete</creatorcontrib><creatorcontrib>Doak, Scott</creatorcontrib><creatorcontrib>Martin, Simon J.</creatorcontrib><creatorcontrib>Hutchings, Mark</creatorcontrib><creatorcontrib>Parnell, Steven R.</creatorcontrib><creatorcontrib>Vasilev, Cvetelin</creatorcontrib><creatorcontrib>Clarke, Nigel</creatorcontrib><creatorcontrib>Ryan, Anthony J.</creatorcontrib><creatorcontrib>Furnass, Will</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Dalgliesh, Robert M.</creatorcontrib><creatorcontrib>Prevost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Parker, Andrew</creatorcontrib><creatorcontrib>Jones, Richard A. L.</creatorcontrib><creatorcontrib>Fairclough, J. Patrick A.</creatorcontrib><creatorcontrib>Parnell, Andrew J.</creatorcontrib><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><description>Cyphochilus
beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of
Cyphochilus
and
Lepidiota stigma
. Chitin-filling fractions are found to be 31 ± 2% for
Cyphochilus
and 34 ± 1% for
Lepidiota stigma
, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation.
White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles,
Cyphochilus
and
L. stigma
, and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</description><subject>14/28</subject><subject>14/63</subject><subject>639/301/54/989</subject><subject>639/638/455/953</subject><subject>639/925/357/537</subject><subject>Beetles</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chitin</subject><subject>Finite difference method</subject><subject>Liquid phases</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Phase separation</subject><subject>Reflectance curves</subject><subject>Simulation</subject><subject>Spinodal decomposition</subject><subject>Stigma</subject><subject>White light</subject><subject>X-ray scattering</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOOg8gLuA62h-22Ypg38w4EbXIW1vpxk6bSfJKLPzHXxDn8SMFXTj6h443zkXDkIXjF4xKorrIDmlklCmCeWUk-IIzbjQmogs08d_9Cmah7CmNFFM5HkxQ7B0252rP98_um-Bx9YGwAFG6210Q483gx_boRtWDgJ2Pd510Vvy1roIuASIXaIr2yXT9jW2OOz72EJ0FYZU-JqcPp6jk8Z2AeY_9wy93N0-Lx7I8un-cXGzJJVQOpLaMgaFymqhy0IxqgSTQjWNLKsSmLK5laWCrCyFpYpnOqul5cBVIeuMMa7FGbqcekc_bHcQolkPO9-nl4aLQme5YlIlik1U5YcQPDRm9G5j_d4wag6DmmlQkwY1h0FNkTJ8yoTE9ivwv83_h74AYlh6NQ</recordid><startdate>20190829</startdate><enddate>20190829</enddate><creator>Burg, Stephanie L.</creator><creator>Washington, Adam</creator><creator>Coles, David M.</creator><creator>Bianco, Antonino</creator><creator>McLoughlin, Daragh</creator><creator>Mykhaylyk, Oleksandr O.</creator><creator>Villanova, Julie</creator><creator>Dennison, Andrew J. C.</creator><creator>Hill, Christopher J.</creator><creator>Vukusic, Pete</creator><creator>Doak, Scott</creator><creator>Martin, Simon J.</creator><creator>Hutchings, Mark</creator><creator>Parnell, Steven R.</creator><creator>Vasilev, Cvetelin</creator><creator>Clarke, Nigel</creator><creator>Ryan, Anthony J.</creator><creator>Furnass, Will</creator><creator>Croucher, Mike</creator><creator>Dalgliesh, Robert M.</creator><creator>Prevost, Sylvain</creator><creator>Dattani, Rajeev</creator><creator>Parker, Andrew</creator><creator>Jones, Richard A. L.</creator><creator>Fairclough, J. Patrick A.</creator><creator>Parnell, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-1675-5219</orcidid><orcidid>https://orcid.org/0000-0001-7870-9843</orcidid><orcidid>https://orcid.org/0000-0002-6814-679X</orcidid></search><sort><creationdate>20190829</creationdate><title>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</title><author>Burg, Stephanie L. ; Washington, Adam ; Coles, David M. ; Bianco, Antonino ; McLoughlin, Daragh ; Mykhaylyk, Oleksandr O. ; Villanova, Julie ; Dennison, Andrew J. C. ; Hill, Christopher J. ; Vukusic, Pete ; Doak, Scott ; Martin, Simon J. ; Hutchings, Mark ; Parnell, Steven R. ; Vasilev, Cvetelin ; Clarke, Nigel ; Ryan, Anthony J. ; Furnass, Will ; Croucher, Mike ; Dalgliesh, Robert M. ; Prevost, Sylvain ; Dattani, Rajeev ; Parker, Andrew ; Jones, Richard A. L. ; Fairclough, J. Patrick A. ; Parnell, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-da11e856d39b8510531435ff4bcbe15a7a4b5e6bb3a052696d4a2e2584d611293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/28</topic><topic>14/63</topic><topic>639/301/54/989</topic><topic>639/638/455/953</topic><topic>639/925/357/537</topic><topic>Beetles</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chitin</topic><topic>Finite difference method</topic><topic>Liquid phases</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Phase separation</topic><topic>Reflectance curves</topic><topic>Simulation</topic><topic>Spinodal decomposition</topic><topic>Stigma</topic><topic>White light</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burg, Stephanie L.</creatorcontrib><creatorcontrib>Washington, Adam</creatorcontrib><creatorcontrib>Coles, David M.</creatorcontrib><creatorcontrib>Bianco, Antonino</creatorcontrib><creatorcontrib>McLoughlin, Daragh</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Dennison, Andrew J. C.</creatorcontrib><creatorcontrib>Hill, Christopher J.</creatorcontrib><creatorcontrib>Vukusic, Pete</creatorcontrib><creatorcontrib>Doak, Scott</creatorcontrib><creatorcontrib>Martin, Simon J.</creatorcontrib><creatorcontrib>Hutchings, Mark</creatorcontrib><creatorcontrib>Parnell, Steven R.</creatorcontrib><creatorcontrib>Vasilev, Cvetelin</creatorcontrib><creatorcontrib>Clarke, Nigel</creatorcontrib><creatorcontrib>Ryan, Anthony J.</creatorcontrib><creatorcontrib>Furnass, Will</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Dalgliesh, Robert M.</creatorcontrib><creatorcontrib>Prevost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Parker, Andrew</creatorcontrib><creatorcontrib>Jones, Richard A. L.</creatorcontrib><creatorcontrib>Fairclough, J. Patrick A.</creatorcontrib><creatorcontrib>Parnell, Andrew J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burg, Stephanie L.</au><au>Washington, Adam</au><au>Coles, David M.</au><au>Bianco, Antonino</au><au>McLoughlin, Daragh</au><au>Mykhaylyk, Oleksandr O.</au><au>Villanova, Julie</au><au>Dennison, Andrew J. C.</au><au>Hill, Christopher J.</au><au>Vukusic, Pete</au><au>Doak, Scott</au><au>Martin, Simon J.</au><au>Hutchings, Mark</au><au>Parnell, Steven R.</au><au>Vasilev, Cvetelin</au><au>Clarke, Nigel</au><au>Ryan, Anthony J.</au><au>Furnass, Will</au><au>Croucher, Mike</au><au>Dalgliesh, Robert M.</au><au>Prevost, Sylvain</au><au>Dattani, Rajeev</au><au>Parker, Andrew</au><au>Jones, Richard A. L.</au><au>Fairclough, J. Patrick A.</au><au>Parnell, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><date>2019-08-29</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><artnum>100</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>Cyphochilus
beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of
Cyphochilus
and
Lepidiota stigma
. Chitin-filling fractions are found to be 31 ± 2% for
Cyphochilus
and 34 ± 1% for
Lepidiota stigma
, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation.
White beetle scales strongly scatter white light, whilst being very thin. Here, the authors measured the internal scale nanostructure for the beetles,
Cyphochilus
and
L. stigma
, and demonstrate that the optical structure can be simulated using liquid–liquid phase separation nanostructures, pointing to this as the formation mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42004-019-0202-8</doi><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-1675-5219</orcidid><orcidid>https://orcid.org/0000-0001-7870-9843</orcidid><orcidid>https://orcid.org/0000-0002-6814-679X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3669 |
ispartof | Communications chemistry, 2019-08, Vol.2 (1), Article 100 |
issn | 2399-3669 2399-3669 |
language | eng |
recordid | cdi_proquest_journals_2389675145 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | 14/28 14/63 639/301/54/989 639/638/455/953 639/925/357/537 Beetles Chemistry Chemistry and Materials Science Chemistry/Food Science Chitin Finite difference method Liquid phases Morphology Nanostructure Phase separation Reflectance curves Simulation Spinodal decomposition Stigma White light X-ray scattering |
title | Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%93liquid%20phase%20separation%20morphologies%20in%20ultra-white%20beetle%20scales%20and%20a%20synthetic%20equivalent&rft.jtitle=Communications%20chemistry&rft.au=Burg,%20Stephanie%20L.&rft.date=2019-08-29&rft.volume=2&rft.issue=1&rft.artnum=100&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-019-0202-8&rft_dat=%3Cproquest_cross%3E2389675145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389675145&rft_id=info:pmid/&rfr_iscdi=true |