Rapid formation of massive black holes in close proximity to embryonic protogalaxies
The appearance of supermassive black holes at very early times 1 – 3 in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse 4 , 5 black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2017-03, Vol.1 (4), Article 0075 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Nature astronomy |
container_volume | 1 |
creator | Regan, John A. Visbal, Eli Wise, John H. Haiman, Zoltán Johansson, Peter H. Bryan, Greg L. |
description | The appearance of supermassive black holes at very early times
1
–
3
in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse
4
,
5
black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided
6
,
7
; this can be achieved by destroying H
2
by means of Lyman–Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman–Werner flux of
J
BG
≳ 100
J
21
(
J
21
is the intensity of background radiation in units of 10
−21
erg cm
−2
s
−1
Hz
−1
sr
−1
). Second, an intense burst of Lyman–Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10
4
−10
5
M
⊙
.
The key ingredients for a massive cloud of gas to collapse and directly form a black hole without fragmenting and forming stars are a strong ionizing background emission and a closely timed burst of star formation in its vicinity. |
doi_str_mv | 10.1038/s41550-017-0075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389668843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389668843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-7f5649b595139fbc2ea3eec8984300cca88c009e8774504b188bcde98f15dc7d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOObOXgOe616apkmOMvwFA0HmOaRpOjPbZiadbP-9KRX04uk9Ht8fjw9C1wRuCVCxjAVhDDIgPAPg7AzNcip5RmlZnv_ZL9Eixh0A5JIRSsgMbV713tW48aHTg_M99g3udIzuy-Kq1eYDv_vWRux6bFofLd4Hf3SdG0548Nh2VTj53pnxPPitbvXR2XiFLhrdRrv4mXP09nC_WT1l65fH59XdOjOUl0PGG1YWsmLjL7KpTG41tdYIKQoKYIwWwgBIKzgvGBQVEaIytZWiIaw2vKZzdDPlpvbPg42D2vlD6FOlyqmQZSlSUlItJ5UJPsZgG7UPrtPhpAiokZ6a6KlET430kgMmR0zKfmvDb-5_lm9IUHG3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389668843</pqid></control><display><type>article</type><title>Rapid formation of massive black holes in close proximity to embryonic protogalaxies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Regan, John A. ; Visbal, Eli ; Wise, John H. ; Haiman, Zoltán ; Johansson, Peter H. ; Bryan, Greg L.</creator><creatorcontrib>Regan, John A. ; Visbal, Eli ; Wise, John H. ; Haiman, Zoltán ; Johansson, Peter H. ; Bryan, Greg L.</creatorcontrib><description>The appearance of supermassive black holes at very early times
1
–
3
in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse
4
,
5
black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided
6
,
7
; this can be achieved by destroying H
2
by means of Lyman–Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman–Werner flux of
J
BG
≳ 100
J
21
(
J
21
is the intensity of background radiation in units of 10
−21
erg cm
−2
s
−1
Hz
−1
sr
−1
). Second, an intense burst of Lyman–Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10
4
−10
5
M
⊙
.
The key ingredients for a massive cloud of gas to collapse and directly form a black hole without fragmenting and forming stars are a strong ionizing background emission and a closely timed burst of star formation in its vicinity.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-017-0075</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/124 ; 639/33/34/861 ; Astronomy ; Astrophysics and Cosmology ; Background radiation ; Black holes ; letter ; Physics ; Physics and Astronomy ; Radiative transfer ; Star & galaxy formation</subject><ispartof>Nature astronomy, 2017-03, Vol.1 (4), Article 0075</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-7f5649b595139fbc2ea3eec8984300cca88c009e8774504b188bcde98f15dc7d3</citedby><cites>FETCH-LOGICAL-c376t-7f5649b595139fbc2ea3eec8984300cca88c009e8774504b188bcde98f15dc7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-017-0075$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-017-0075$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Regan, John A.</creatorcontrib><creatorcontrib>Visbal, Eli</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Haiman, Zoltán</creatorcontrib><creatorcontrib>Johansson, Peter H.</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><title>Rapid formation of massive black holes in close proximity to embryonic protogalaxies</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>The appearance of supermassive black holes at very early times
1
–
3
in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse
4
,
5
black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided
6
,
7
; this can be achieved by destroying H
2
by means of Lyman–Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman–Werner flux of
J
BG
≳ 100
J
21
(
J
21
is the intensity of background radiation in units of 10
−21
erg cm
−2
s
−1
Hz
−1
sr
−1
). Second, an intense burst of Lyman–Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10
4
−10
5
M
⊙
.
The key ingredients for a massive cloud of gas to collapse and directly form a black hole without fragmenting and forming stars are a strong ionizing background emission and a closely timed burst of star formation in its vicinity.</description><subject>639/33/34/124</subject><subject>639/33/34/861</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Background radiation</subject><subject>Black holes</subject><subject>letter</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiative transfer</subject><subject>Star & galaxy formation</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAUx4MoOObOXgOe616apkmOMvwFA0HmOaRpOjPbZiadbP-9KRX04uk9Ht8fjw9C1wRuCVCxjAVhDDIgPAPg7AzNcip5RmlZnv_ZL9Eixh0A5JIRSsgMbV713tW48aHTg_M99g3udIzuy-Kq1eYDv_vWRux6bFofLd4Hf3SdG0548Nh2VTj53pnxPPitbvXR2XiFLhrdRrv4mXP09nC_WT1l65fH59XdOjOUl0PGG1YWsmLjL7KpTG41tdYIKQoKYIwWwgBIKzgvGBQVEaIytZWiIaw2vKZzdDPlpvbPg42D2vlD6FOlyqmQZSlSUlItJ5UJPsZgG7UPrtPhpAiokZ6a6KlET430kgMmR0zKfmvDb-5_lm9IUHG3</recordid><startdate>20170313</startdate><enddate>20170313</enddate><creator>Regan, John A.</creator><creator>Visbal, Eli</creator><creator>Wise, John H.</creator><creator>Haiman, Zoltán</creator><creator>Johansson, Peter H.</creator><creator>Bryan, Greg L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170313</creationdate><title>Rapid formation of massive black holes in close proximity to embryonic protogalaxies</title><author>Regan, John A. ; Visbal, Eli ; Wise, John H. ; Haiman, Zoltán ; Johansson, Peter H. ; Bryan, Greg L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-7f5649b595139fbc2ea3eec8984300cca88c009e8774504b188bcde98f15dc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/33/34/124</topic><topic>639/33/34/861</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Background radiation</topic><topic>Black holes</topic><topic>letter</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiative transfer</topic><topic>Star & galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regan, John A.</creatorcontrib><creatorcontrib>Visbal, Eli</creatorcontrib><creatorcontrib>Wise, John H.</creatorcontrib><creatorcontrib>Haiman, Zoltán</creatorcontrib><creatorcontrib>Johansson, Peter H.</creatorcontrib><creatorcontrib>Bryan, Greg L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regan, John A.</au><au>Visbal, Eli</au><au>Wise, John H.</au><au>Haiman, Zoltán</au><au>Johansson, Peter H.</au><au>Bryan, Greg L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid formation of massive black holes in close proximity to embryonic protogalaxies</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2017-03-13</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><artnum>0075</artnum><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>The appearance of supermassive black holes at very early times
1
–
3
in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse
4
,
5
black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided
6
,
7
; this can be achieved by destroying H
2
by means of Lyman–Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman–Werner flux of
J
BG
≳ 100
J
21
(
J
21
is the intensity of background radiation in units of 10
−21
erg cm
−2
s
−1
Hz
−1
sr
−1
). Second, an intense burst of Lyman–Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10
4
−10
5
M
⊙
.
The key ingredients for a massive cloud of gas to collapse and directly form a black hole without fragmenting and forming stars are a strong ionizing background emission and a closely timed burst of star formation in its vicinity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-017-0075</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3366 |
ispartof | Nature astronomy, 2017-03, Vol.1 (4), Article 0075 |
issn | 2397-3366 2397-3366 |
language | eng |
recordid | cdi_proquest_journals_2389668843 |
source | SpringerLink Journals - AutoHoldings |
subjects | 639/33/34/124 639/33/34/861 Astronomy Astrophysics and Cosmology Background radiation Black holes letter Physics Physics and Astronomy Radiative transfer Star & galaxy formation |
title | Rapid formation of massive black holes in close proximity to embryonic protogalaxies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20formation%20of%20massive%20black%20holes%20in%20close%20proximity%20to%20embryonic%20protogalaxies&rft.jtitle=Nature%20astronomy&rft.au=Regan,%20John%20A.&rft.date=2017-03-13&rft.volume=1&rft.issue=4&rft.artnum=0075&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-017-0075&rft_dat=%3Cproquest_cross%3E2389668843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389668843&rft_id=info:pmid/&rfr_iscdi=true |