Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes
In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, such that key size and security level. The McEliece scheme is one of the promising al...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sabira El Khalfaoui Nagy, Gábor P |
description | In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, such that key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By analyzing computational data series of true dimension, we concluded that they can be estimated by the extreme value distribution function. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2389386969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389386969</sourcerecordid><originalsourceid>FETCH-proquest_journals_23893869693</originalsourceid><addsrcrecordid>eNqNisEOgjAQBRsTE4nyD008k2ArSM-A4eZB7gRkq0toq2z5f8X4AZ7mZd6sWCCkPETZUYgNC4mGOI5FehJJIgNWlOTRtB7tndcP4AUasITO8ov-iuvcaYSxX8bN9UDcaV7BZNBja3m-qB1b63YkCH_csv25rPMqek7uNQP5ZnDzZD9XI2SmZJaqVMn_qjfaLDnj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389386969</pqid></control><display><type>article</type><title>Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes</title><source>Freely Accessible Journals</source><creator>Sabira El Khalfaoui ; Nagy, Gábor P</creator><creatorcontrib>Sabira El Khalfaoui ; Nagy, Gábor P</creatorcontrib><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, such that key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By analyzing computational data series of true dimension, we concluded that they can be estimated by the extreme value distribution function.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cryptography ; Distribution functions ; Extreme values ; Quantum computing</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Sabira El Khalfaoui</creatorcontrib><creatorcontrib>Nagy, Gábor P</creatorcontrib><title>Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes</title><title>arXiv.org</title><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, such that key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By analyzing computational data series of true dimension, we concluded that they can be estimated by the extreme value distribution function.</description><subject>Cryptography</subject><subject>Distribution functions</subject><subject>Extreme values</subject><subject>Quantum computing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEOgjAQBRsTE4nyD008k2ArSM-A4eZB7gRkq0toq2z5f8X4AZ7mZd6sWCCkPETZUYgNC4mGOI5FehJJIgNWlOTRtB7tndcP4AUasITO8ov-iuvcaYSxX8bN9UDcaV7BZNBja3m-qB1b63YkCH_csv25rPMqek7uNQP5ZnDzZD9XI2SmZJaqVMn_qjfaLDnj</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Sabira El Khalfaoui</creator><creator>Nagy, Gábor P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200401</creationdate><title>Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes</title><author>Sabira El Khalfaoui ; Nagy, Gábor P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23893869693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cryptography</topic><topic>Distribution functions</topic><topic>Extreme values</topic><topic>Quantum computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabira El Khalfaoui</creatorcontrib><creatorcontrib>Nagy, Gábor P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabira El Khalfaoui</au><au>Nagy, Gábor P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes</atitle><jtitle>arXiv.org</jtitle><date>2020-04-01</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, such that key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By analyzing computational data series of true dimension, we concluded that they can be estimated by the extreme value distribution function.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2389386969 |
source | Freely Accessible Journals |
subjects | Cryptography Distribution functions Extreme values Quantum computing |
title | Estimating The Dimension Of The Subfield Subcodes of Hermitian Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Estimating%20The%20Dimension%20Of%20The%20Subfield%20Subcodes%20of%20Hermitian%20Codes&rft.jtitle=arXiv.org&rft.au=Sabira%20El%20Khalfaoui&rft.date=2020-04-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2389386969%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389386969&rft_id=info:pmid/&rfr_iscdi=true |