A New Frontier of Printed Electronics: Flexible Hybrid Electronics

The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-04, Vol.32 (15), p.e1905279-n/a
Hauptverfasser: Khan, Yasser, Thielens, Arno, Muin, Sifat, Ting, Jonathan, Baumbauer, Carol, Arias, Ana C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e1905279
container_title Advanced materials (Weinheim)
container_volume 32
creator Khan, Yasser
Thielens, Arno
Muin, Sifat
Ting, Jonathan
Baumbauer, Carol
Arias, Ana C.
description The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large‐area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented. Flexible hybrid electronics (FHE) with applications in wearable health, structural health, and industrial, environmental, and agricultural sensing are reviewed. The recent progress, fabrication, application, and challenges, and an outlook, relating to FHE are presented with a focus on the fundamental building blocks of FHE systems: printed sensors and circuits, thinned silicon integrated circuits, printed antennas, printed energy harvesting and storage modules, and printed displays.
doi_str_mv 10.1002/adma.201905279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389219251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389219251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-3c5c898935c228861c99fa78ce0710d068ed793c627881b0fbf7b72c6d066e7f3</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGI4hePZomnouzu-zHeKsIYoIfBz1v2u1uUlIobkuAf28JiPHkaZKZZ56ZvIRcU-hTAHaX5vO0z4AiCKbwhHSpYDQeAIpT0gXkIkY50B1yUdczAEAJ8px0OFUDpinrkockenXraByqRVO4EFU-eg_FonF5NCqdbdp-Yev7aFy6TZGVLppss1D8GV6SM5-Wtbs61B75HI8-hpN4-vb0PEymsRWcYcytsBp1-5JlTGtJLaJPlbYOFIUcpHa5Qm4lU1rTDHzmVaaYle1IOuV5j9zuvctQfa1c3ZhZtQqL9qRhXCOjyARtqf6esqGq6-C8WYZinoatoWB2kZldZOYYWbtwc9CusrnLj_hPRi2Ae2BdlG77j84kjy_Jr_wbVUd2Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389219251</pqid></control><display><type>article</type><title>A New Frontier of Printed Electronics: Flexible Hybrid Electronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Khan, Yasser ; Thielens, Arno ; Muin, Sifat ; Ting, Jonathan ; Baumbauer, Carol ; Arias, Ana C.</creator><creatorcontrib>Khan, Yasser ; Thielens, Arno ; Muin, Sifat ; Ting, Jonathan ; Baumbauer, Carol ; Arias, Ana C.</creatorcontrib><description>The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large‐area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented. Flexible hybrid electronics (FHE) with applications in wearable health, structural health, and industrial, environmental, and agricultural sensing are reviewed. The recent progress, fabrication, application, and challenges, and an outlook, relating to FHE are presented with a focus on the fundamental building blocks of FHE systems: printed sensors and circuits, thinned silicon integrated circuits, printed antennas, printed energy harvesting and storage modules, and printed displays.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905279</identifier><identifier>PMID: 31742812</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electronics ; Energy harvesting ; Energy storage ; environmental sensors ; Flexible components ; flexible electronics ; Integrated circuits ; Materials science ; Microstrip antennas ; printed electronics ; Silicon ; structural health monitoring ; wearable health monitoring</subject><ispartof>Advanced materials (Weinheim), 2020-04, Vol.32 (15), p.e1905279-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5329-3c5c898935c228861c99fa78ce0710d068ed793c627881b0fbf7b72c6d066e7f3</citedby><cites>FETCH-LOGICAL-c5329-3c5c898935c228861c99fa78ce0710d068ed793c627881b0fbf7b72c6d066e7f3</cites><orcidid>0000-0003-2290-0854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31742812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Yasser</creatorcontrib><creatorcontrib>Thielens, Arno</creatorcontrib><creatorcontrib>Muin, Sifat</creatorcontrib><creatorcontrib>Ting, Jonathan</creatorcontrib><creatorcontrib>Baumbauer, Carol</creatorcontrib><creatorcontrib>Arias, Ana C.</creatorcontrib><title>A New Frontier of Printed Electronics: Flexible Hybrid Electronics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large‐area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented. Flexible hybrid electronics (FHE) with applications in wearable health, structural health, and industrial, environmental, and agricultural sensing are reviewed. The recent progress, fabrication, application, and challenges, and an outlook, relating to FHE are presented with a focus on the fundamental building blocks of FHE systems: printed sensors and circuits, thinned silicon integrated circuits, printed antennas, printed energy harvesting and storage modules, and printed displays.</description><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>environmental sensors</subject><subject>Flexible components</subject><subject>flexible electronics</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Microstrip antennas</subject><subject>printed electronics</subject><subject>Silicon</subject><subject>structural health monitoring</subject><subject>wearable health monitoring</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhjdGI4hePZomnouzu-zHeKsIYoIfBz1v2u1uUlIobkuAf28JiPHkaZKZZ56ZvIRcU-hTAHaX5vO0z4AiCKbwhHSpYDQeAIpT0gXkIkY50B1yUdczAEAJ8px0OFUDpinrkockenXraByqRVO4EFU-eg_FonF5NCqdbdp-Yev7aFy6TZGVLppss1D8GV6SM5-Wtbs61B75HI8-hpN4-vb0PEymsRWcYcytsBp1-5JlTGtJLaJPlbYOFIUcpHa5Qm4lU1rTDHzmVaaYle1IOuV5j9zuvctQfa1c3ZhZtQqL9qRhXCOjyARtqf6esqGq6-C8WYZinoatoWB2kZldZOYYWbtwc9CusrnLj_hPRi2Ae2BdlG77j84kjy_Jr_wbVUd2Aw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Khan, Yasser</creator><creator>Thielens, Arno</creator><creator>Muin, Sifat</creator><creator>Ting, Jonathan</creator><creator>Baumbauer, Carol</creator><creator>Arias, Ana C.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2290-0854</orcidid></search><sort><creationdate>20200401</creationdate><title>A New Frontier of Printed Electronics: Flexible Hybrid Electronics</title><author>Khan, Yasser ; Thielens, Arno ; Muin, Sifat ; Ting, Jonathan ; Baumbauer, Carol ; Arias, Ana C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-3c5c898935c228861c99fa78ce0710d068ed793c627881b0fbf7b72c6d066e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>environmental sensors</topic><topic>Flexible components</topic><topic>flexible electronics</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Microstrip antennas</topic><topic>printed electronics</topic><topic>Silicon</topic><topic>structural health monitoring</topic><topic>wearable health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Yasser</creatorcontrib><creatorcontrib>Thielens, Arno</creatorcontrib><creatorcontrib>Muin, Sifat</creatorcontrib><creatorcontrib>Ting, Jonathan</creatorcontrib><creatorcontrib>Baumbauer, Carol</creatorcontrib><creatorcontrib>Arias, Ana C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Yasser</au><au>Thielens, Arno</au><au>Muin, Sifat</au><au>Ting, Jonathan</au><au>Baumbauer, Carol</au><au>Arias, Ana C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Frontier of Printed Electronics: Flexible Hybrid Electronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>15</issue><spage>e1905279</spage><epage>n/a</epage><pages>e1905279-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low‐power high‐performance computing, creating flexible and large‐area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large‐area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented. Flexible hybrid electronics (FHE) with applications in wearable health, structural health, and industrial, environmental, and agricultural sensing are reviewed. The recent progress, fabrication, application, and challenges, and an outlook, relating to FHE are presented with a focus on the fundamental building blocks of FHE systems: printed sensors and circuits, thinned silicon integrated circuits, printed antennas, printed energy harvesting and storage modules, and printed displays.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31742812</pmid><doi>10.1002/adma.201905279</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-2290-0854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-04, Vol.32 (15), p.e1905279-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2389219251
source Wiley Online Library Journals Frontfile Complete
subjects Electronics
Energy harvesting
Energy storage
environmental sensors
Flexible components
flexible electronics
Integrated circuits
Materials science
Microstrip antennas
printed electronics
Silicon
structural health monitoring
wearable health monitoring
title A New Frontier of Printed Electronics: Flexible Hybrid Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Frontier%20of%20Printed%20Electronics:%20Flexible%20Hybrid%20Electronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Khan,%20Yasser&rft.date=2020-04-01&rft.volume=32&rft.issue=15&rft.spage=e1905279&rft.epage=n/a&rft.pages=e1905279-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905279&rft_dat=%3Cproquest_cross%3E2389219251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389219251&rft_id=info:pmid/31742812&rfr_iscdi=true