Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter

This study presents an improved discrete Kalman filter for simultaneously estimating both all state variables and the unknown road roughness input for a vehicle suspension control system that plays a key role in the ride quality and handling performance while driving the vehicle. The suspension syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2020-05, Vol.234 (6), p.1610-1622
Hauptverfasser: Kim, Gi-Woo, Kang, Sun-Woo, Kim, Jung-Sik, Oh, Jong-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 6
container_start_page 1610
container_title Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering
container_volume 234
creator Kim, Gi-Woo
Kang, Sun-Woo
Kim, Jung-Sik
Oh, Jong-Seok
description This study presents an improved discrete Kalman filter for simultaneously estimating both all state variables and the unknown road roughness input for a vehicle suspension control system that plays a key role in the ride quality and handling performance while driving the vehicle. The suspension system is influenced by the road roughness input, which causes undesirable vibrations associated with vehicle instability. It is therefore important to estimate the road roughness and state variables information when designing the model-based controller for the vehicle suspension control system associated with the vehicle’s vertical dynamics. However, the implementation of conventional estimation theories for the suspension control system is challenging because the road roughness acts as an unknown input and is difficult to be measured or estimated while driving. This study presents an improved Kalman filter with unknown input, which can simultaneously estimate the state variables and road roughness without any prior information about the vehicle suspension control system. The proposed road roughness input estimator is evaluated by using an in-vehicle test bed with a laser-type profilometer. Finally, the state estimation performance of the proposed estimator for a vehicle suspension control system is validated by using CarSim software.
doi_str_mv 10.1177/0954407019894809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389149662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954407019894809</sage_id><sourcerecordid>2389149662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6b9a95e6e53875100c9a6ee8fe6fec1cdfee93975424c4f82d4cef4eefda34ca3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLgunr3GPBcTdr0kaMsvnDBg3ou2XSy27VNaiZV9hf4t01ZQRCcwwzM9xjmI-Scs0vOy_KKyVwIVjIuKykqJg_ILGWCJ6mU_JDMJjiZ8GNygrhlsUqRz8jXc9uPXVAW3IgUMLS9Cq2z1BmKQQWgyjZ0tG_WfVrqnWpiG9cbC4i0tcMYqHGefsCm1R1QHHEAi5OBdjZ411HcYYCerhRCQ-O-aVF7iMaPquuVpabtAvhTcmRUh3D2M-fk9fbmZXGfLJ_uHhbXy0RnTIakWEklcyggz6oy54xpqQqAykBhQHPdGACZyTIXqdDCVGkjNBgBYBqVCa2yObnY-w7evY_x33rrRm_jyTrNKsmFLIo0stiepb1D9GDqwcdg_K7mrJ7irv_GHSXJXoJqDb-m__K_AcWWg94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389149662</pqid></control><display><type>article</type><title>Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter</title><source>SAGE Complete A-Z List</source><creator>Kim, Gi-Woo ; Kang, Sun-Woo ; Kim, Jung-Sik ; Oh, Jong-Seok</creator><creatorcontrib>Kim, Gi-Woo ; Kang, Sun-Woo ; Kim, Jung-Sik ; Oh, Jong-Seok</creatorcontrib><description>This study presents an improved discrete Kalman filter for simultaneously estimating both all state variables and the unknown road roughness input for a vehicle suspension control system that plays a key role in the ride quality and handling performance while driving the vehicle. The suspension system is influenced by the road roughness input, which causes undesirable vibrations associated with vehicle instability. It is therefore important to estimate the road roughness and state variables information when designing the model-based controller for the vehicle suspension control system associated with the vehicle’s vertical dynamics. However, the implementation of conventional estimation theories for the suspension control system is challenging because the road roughness acts as an unknown input and is difficult to be measured or estimated while driving. This study presents an improved Kalman filter with unknown input, which can simultaneously estimate the state variables and road roughness without any prior information about the vehicle suspension control system. The proposed road roughness input estimator is evaluated by using an in-vehicle test bed with a laser-type profilometer. Finally, the state estimation performance of the proposed estimator for a vehicle suspension control system is validated by using CarSim software.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/0954407019894809</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control systems design ; Driver behavior ; Kalman filters ; Profilometers ; Roughness ; Speed limits ; State estimation ; State variable ; Suspension systems</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2020-05, Vol.234 (6), p.1610-1622</ispartof><rights>IMechE 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6b9a95e6e53875100c9a6ee8fe6fec1cdfee93975424c4f82d4cef4eefda34ca3</citedby><cites>FETCH-LOGICAL-c309t-6b9a95e6e53875100c9a6ee8fe6fec1cdfee93975424c4f82d4cef4eefda34ca3</cites><orcidid>0000-0001-6976-6205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954407019894809$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954407019894809$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Kim, Gi-Woo</creatorcontrib><creatorcontrib>Kang, Sun-Woo</creatorcontrib><creatorcontrib>Kim, Jung-Sik</creatorcontrib><creatorcontrib>Oh, Jong-Seok</creatorcontrib><title>Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter</title><title>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</title><description>This study presents an improved discrete Kalman filter for simultaneously estimating both all state variables and the unknown road roughness input for a vehicle suspension control system that plays a key role in the ride quality and handling performance while driving the vehicle. The suspension system is influenced by the road roughness input, which causes undesirable vibrations associated with vehicle instability. It is therefore important to estimate the road roughness and state variables information when designing the model-based controller for the vehicle suspension control system associated with the vehicle’s vertical dynamics. However, the implementation of conventional estimation theories for the suspension control system is challenging because the road roughness acts as an unknown input and is difficult to be measured or estimated while driving. This study presents an improved Kalman filter with unknown input, which can simultaneously estimate the state variables and road roughness without any prior information about the vehicle suspension control system. The proposed road roughness input estimator is evaluated by using an in-vehicle test bed with a laser-type profilometer. Finally, the state estimation performance of the proposed estimator for a vehicle suspension control system is validated by using CarSim software.</description><subject>Control systems design</subject><subject>Driver behavior</subject><subject>Kalman filters</subject><subject>Profilometers</subject><subject>Roughness</subject><subject>Speed limits</subject><subject>State estimation</subject><subject>State variable</subject><subject>Suspension systems</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLgunr3GPBcTdr0kaMsvnDBg3ou2XSy27VNaiZV9hf4t01ZQRCcwwzM9xjmI-Scs0vOy_KKyVwIVjIuKykqJg_ILGWCJ6mU_JDMJjiZ8GNygrhlsUqRz8jXc9uPXVAW3IgUMLS9Cq2z1BmKQQWgyjZ0tG_WfVrqnWpiG9cbC4i0tcMYqHGefsCm1R1QHHEAi5OBdjZ411HcYYCerhRCQ-O-aVF7iMaPquuVpabtAvhTcmRUh3D2M-fk9fbmZXGfLJ_uHhbXy0RnTIakWEklcyggz6oy54xpqQqAykBhQHPdGACZyTIXqdDCVGkjNBgBYBqVCa2yObnY-w7evY_x33rrRm_jyTrNKsmFLIo0stiepb1D9GDqwcdg_K7mrJ7irv_GHSXJXoJqDb-m__K_AcWWg94</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Kim, Gi-Woo</creator><creator>Kang, Sun-Woo</creator><creator>Kim, Jung-Sik</creator><creator>Oh, Jong-Seok</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-6976-6205</orcidid></search><sort><creationdate>202005</creationdate><title>Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter</title><author>Kim, Gi-Woo ; Kang, Sun-Woo ; Kim, Jung-Sik ; Oh, Jong-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6b9a95e6e53875100c9a6ee8fe6fec1cdfee93975424c4f82d4cef4eefda34ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control systems design</topic><topic>Driver behavior</topic><topic>Kalman filters</topic><topic>Profilometers</topic><topic>Roughness</topic><topic>Speed limits</topic><topic>State estimation</topic><topic>State variable</topic><topic>Suspension systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gi-Woo</creatorcontrib><creatorcontrib>Kang, Sun-Woo</creatorcontrib><creatorcontrib>Kim, Jung-Sik</creatorcontrib><creatorcontrib>Oh, Jong-Seok</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gi-Woo</au><au>Kang, Sun-Woo</au><au>Kim, Jung-Sik</au><au>Oh, Jong-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle><date>2020-05</date><risdate>2020</risdate><volume>234</volume><issue>6</issue><spage>1610</spage><epage>1622</epage><pages>1610-1622</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>This study presents an improved discrete Kalman filter for simultaneously estimating both all state variables and the unknown road roughness input for a vehicle suspension control system that plays a key role in the ride quality and handling performance while driving the vehicle. The suspension system is influenced by the road roughness input, which causes undesirable vibrations associated with vehicle instability. It is therefore important to estimate the road roughness and state variables information when designing the model-based controller for the vehicle suspension control system associated with the vehicle’s vertical dynamics. However, the implementation of conventional estimation theories for the suspension control system is challenging because the road roughness acts as an unknown input and is difficult to be measured or estimated while driving. This study presents an improved Kalman filter with unknown input, which can simultaneously estimate the state variables and road roughness without any prior information about the vehicle suspension control system. The proposed road roughness input estimator is evaluated by using an in-vehicle test bed with a laser-type profilometer. Finally, the state estimation performance of the proposed estimator for a vehicle suspension control system is validated by using CarSim software.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954407019894809</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6976-6205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4070
ispartof Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2020-05, Vol.234 (6), p.1610-1622
issn 0954-4070
2041-2991
language eng
recordid cdi_proquest_journals_2389149662
source SAGE Complete A-Z List
subjects Control systems design
Driver behavior
Kalman filters
Profilometers
Roughness
Speed limits
State estimation
State variable
Suspension systems
title Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20estimation%20of%20state%20and%20unknown%20road%20roughness%20input%20for%20vehicle%20suspension%20control%20system%20based%20on%20discrete%20Kalman%20filter&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20D,%20Journal%20of%20automobile%20engineering&rft.au=Kim,%20Gi-Woo&rft.date=2020-05&rft.volume=234&rft.issue=6&rft.spage=1610&rft.epage=1622&rft.pages=1610-1622&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/0954407019894809&rft_dat=%3Cproquest_cross%3E2389149662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389149662&rft_id=info:pmid/&rft_sage_id=10.1177_0954407019894809&rfr_iscdi=true