Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency

Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-04, Vol.10 (14), p.n/a
Hauptverfasser: Ryu, Seung Un, Abbas, Zaheer, Cho, Ara, Lee, HyunKyung, Song, Chang Eun, Lee, Hang Ken, Lee, Sang Kyu, Shin, Won Suk, Moon, Sang‐Jin, Park, Taiho, Kim, Hong Il, Lee, Jong‐Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced energy materials
container_volume 10
creator Ryu, Seung Un
Abbas, Zaheer
Cho, Ara
Lee, HyunKyung
Song, Chang Eun
Lee, Hang Ken
Lee, Sang Kyu
Shin, Won Suk
Moon, Sang‐Jin
Park, Taiho
Kim, Hong Il
Lee, Jong‐Cheol
description Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs. A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.
doi_str_mv 10.1002/aenm.201903846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389134357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389134357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhoMoWLRXzwviMXU3m6SbYy3VCq0Kqecwu5m0WzbZukksPekj-Iw-iSmVenQu8zPz_TPwe94VowNGaXALWJWDgLKEchHGJ16PxSz0YxHS06PmwbnXr-s17SpMGOW8532kjYMGl1qRKRi7xIqkrawb3bSNthVpLJlUIA2SqV6uvj-_XtAV1pVQKSRpCcZ0s7k1qFqDnbyDGnOygCrHkqTWgCNjNIZsdbMi9h0dYdENmRSFVhortbv0zgowNfZ_-4X3ej9ZjKf-7PnhcTya-YpHcexHYSACgVTkLI4KBYphJLikuRoWEjDhBQCGLAeMY5V0y0AwIaViUuZDoCG_8K4PdzfOvrVYN9natq7qXmYBFwnjIY-GHTU4UMrZunZYZBunS3C7jNFsn3O2zzk75twZkoNhqw3u_qGz0eRp_uf9AQvQhdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389134357</pqid></control><display><type>article</type><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><source>Access via Wiley Online Library</source><creator>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</creator><creatorcontrib>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</creatorcontrib><description>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs. A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903846</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; bimolecular recombination ; Butyric acid ; Chlorine ; Energy conversion efficiency ; fill factor ; Heterojunctions ; Interpenetrating networks ; Molecular structure ; Morphology ; Photovoltaic cells ; Solar cells ; tandem solar cells</subject><ispartof>Advanced energy materials, 2020-04, Vol.10 (14), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</citedby><cites>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</cites><orcidid>0000-0002-5867-4679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903846$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903846$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Ryu, Seung Un</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Cho, Ara</creatorcontrib><creatorcontrib>Lee, HyunKyung</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Lee, Hang Ken</creatorcontrib><creatorcontrib>Lee, Sang Kyu</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Moon, Sang‐Jin</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><creatorcontrib>Kim, Hong Il</creatorcontrib><creatorcontrib>Lee, Jong‐Cheol</creatorcontrib><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><title>Advanced energy materials</title><description>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs. A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</description><subject>Additives</subject><subject>bimolecular recombination</subject><subject>Butyric acid</subject><subject>Chlorine</subject><subject>Energy conversion efficiency</subject><subject>fill factor</subject><subject>Heterojunctions</subject><subject>Interpenetrating networks</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>tandem solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhoMoWLRXzwviMXU3m6SbYy3VCq0Kqecwu5m0WzbZukksPekj-Iw-iSmVenQu8zPz_TPwe94VowNGaXALWJWDgLKEchHGJ16PxSz0YxHS06PmwbnXr-s17SpMGOW8532kjYMGl1qRKRi7xIqkrawb3bSNthVpLJlUIA2SqV6uvj-_XtAV1pVQKSRpCcZ0s7k1qFqDnbyDGnOygCrHkqTWgCNjNIZsdbMi9h0dYdENmRSFVhortbv0zgowNfZ_-4X3ej9ZjKf-7PnhcTya-YpHcexHYSACgVTkLI4KBYphJLikuRoWEjDhBQCGLAeMY5V0y0AwIaViUuZDoCG_8K4PdzfOvrVYN9natq7qXmYBFwnjIY-GHTU4UMrZunZYZBunS3C7jNFsn3O2zzk75twZkoNhqw3u_qGz0eRp_uf9AQvQhdA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ryu, Seung Un</creator><creator>Abbas, Zaheer</creator><creator>Cho, Ara</creator><creator>Lee, HyunKyung</creator><creator>Song, Chang Eun</creator><creator>Lee, Hang Ken</creator><creator>Lee, Sang Kyu</creator><creator>Shin, Won Suk</creator><creator>Moon, Sang‐Jin</creator><creator>Park, Taiho</creator><creator>Kim, Hong Il</creator><creator>Lee, Jong‐Cheol</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></search><sort><creationdate>20200401</creationdate><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><author>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>bimolecular recombination</topic><topic>Butyric acid</topic><topic>Chlorine</topic><topic>Energy conversion efficiency</topic><topic>fill factor</topic><topic>Heterojunctions</topic><topic>Interpenetrating networks</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>tandem solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Seung Un</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Cho, Ara</creatorcontrib><creatorcontrib>Lee, HyunKyung</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Lee, Hang Ken</creatorcontrib><creatorcontrib>Lee, Sang Kyu</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Moon, Sang‐Jin</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><creatorcontrib>Kim, Hong Il</creatorcontrib><creatorcontrib>Lee, Jong‐Cheol</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Seung Un</au><au>Abbas, Zaheer</au><au>Cho, Ara</au><au>Lee, HyunKyung</au><au>Song, Chang Eun</au><au>Lee, Hang Ken</au><au>Lee, Sang Kyu</au><au>Shin, Won Suk</au><au>Moon, Sang‐Jin</au><au>Park, Taiho</au><au>Kim, Hong Il</au><au>Lee, Jong‐Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</atitle><jtitle>Advanced energy materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>14</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs. A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903846</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-04, Vol.10 (14), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2389134357
source Access via Wiley Online Library
subjects Additives
bimolecular recombination
Butyric acid
Chlorine
Energy conversion efficiency
fill factor
Heterojunctions
Interpenetrating networks
Molecular structure
Morphology
Photovoltaic cells
Solar cells
tandem solar cells
title Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20Halogen%20Substitution%20to%20Enable%20High%E2%80%90Performance%20Small%E2%80%90Molecule%E2%80%90Based%20Tandem%20Solar%20Cell%20with%20over%2015%25%20Efficiency&rft.jtitle=Advanced%20energy%20materials&rft.au=Ryu,%20Seung%20Un&rft.date=2020-04-01&rft.volume=10&rft.issue=14&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903846&rft_dat=%3Cproquest_cross%3E2389134357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389134357&rft_id=info:pmid/&rfr_iscdi=true