Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency
Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-04, Vol.10 (14), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Ryu, Seung Un Abbas, Zaheer Cho, Ara Lee, HyunKyung Song, Chang Eun Lee, Hang Ken Lee, Sang Kyu Shin, Won Suk Moon, Sang‐Jin Park, Taiho Kim, Hong Il Lee, Jong‐Cheol |
description | Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs.
A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm. |
doi_str_mv | 10.1002/aenm.201903846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389134357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389134357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhoMoWLRXzwviMXU3m6SbYy3VCq0Kqecwu5m0WzbZukksPekj-Iw-iSmVenQu8zPz_TPwe94VowNGaXALWJWDgLKEchHGJ16PxSz0YxHS06PmwbnXr-s17SpMGOW8532kjYMGl1qRKRi7xIqkrawb3bSNthVpLJlUIA2SqV6uvj-_XtAV1pVQKSRpCcZ0s7k1qFqDnbyDGnOygCrHkqTWgCNjNIZsdbMi9h0dYdENmRSFVhortbv0zgowNfZ_-4X3ej9ZjKf-7PnhcTya-YpHcexHYSACgVTkLI4KBYphJLikuRoWEjDhBQCGLAeMY5V0y0AwIaViUuZDoCG_8K4PdzfOvrVYN9natq7qXmYBFwnjIY-GHTU4UMrZunZYZBunS3C7jNFsn3O2zzk75twZkoNhqw3u_qGz0eRp_uf9AQvQhdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389134357</pqid></control><display><type>article</type><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><source>Access via Wiley Online Library</source><creator>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</creator><creatorcontrib>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</creatorcontrib><description>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs.
A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903846</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; bimolecular recombination ; Butyric acid ; Chlorine ; Energy conversion efficiency ; fill factor ; Heterojunctions ; Interpenetrating networks ; Molecular structure ; Morphology ; Photovoltaic cells ; Solar cells ; tandem solar cells</subject><ispartof>Advanced energy materials, 2020-04, Vol.10 (14), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</citedby><cites>FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</cites><orcidid>0000-0002-5867-4679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903846$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903846$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Ryu, Seung Un</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Cho, Ara</creatorcontrib><creatorcontrib>Lee, HyunKyung</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Lee, Hang Ken</creatorcontrib><creatorcontrib>Lee, Sang Kyu</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Moon, Sang‐Jin</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><creatorcontrib>Kim, Hong Il</creatorcontrib><creatorcontrib>Lee, Jong‐Cheol</creatorcontrib><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><title>Advanced energy materials</title><description>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs.
A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</description><subject>Additives</subject><subject>bimolecular recombination</subject><subject>Butyric acid</subject><subject>Chlorine</subject><subject>Energy conversion efficiency</subject><subject>fill factor</subject><subject>Heterojunctions</subject><subject>Interpenetrating networks</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>tandem solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhoMoWLRXzwviMXU3m6SbYy3VCq0Kqecwu5m0WzbZukksPekj-Iw-iSmVenQu8zPz_TPwe94VowNGaXALWJWDgLKEchHGJ16PxSz0YxHS06PmwbnXr-s17SpMGOW8532kjYMGl1qRKRi7xIqkrawb3bSNthVpLJlUIA2SqV6uvj-_XtAV1pVQKSRpCcZ0s7k1qFqDnbyDGnOygCrHkqTWgCNjNIZsdbMi9h0dYdENmRSFVhortbv0zgowNfZ_-4X3ej9ZjKf-7PnhcTya-YpHcexHYSACgVTkLI4KBYphJLikuRoWEjDhBQCGLAeMY5V0y0AwIaViUuZDoCG_8K4PdzfOvrVYN9natq7qXmYBFwnjIY-GHTU4UMrZunZYZBunS3C7jNFsn3O2zzk75twZkoNhqw3u_qGz0eRp_uf9AQvQhdA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ryu, Seung Un</creator><creator>Abbas, Zaheer</creator><creator>Cho, Ara</creator><creator>Lee, HyunKyung</creator><creator>Song, Chang Eun</creator><creator>Lee, Hang Ken</creator><creator>Lee, Sang Kyu</creator><creator>Shin, Won Suk</creator><creator>Moon, Sang‐Jin</creator><creator>Park, Taiho</creator><creator>Kim, Hong Il</creator><creator>Lee, Jong‐Cheol</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></search><sort><creationdate>20200401</creationdate><title>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</title><author>Ryu, Seung Un ; Abbas, Zaheer ; Cho, Ara ; Lee, HyunKyung ; Song, Chang Eun ; Lee, Hang Ken ; Lee, Sang Kyu ; Shin, Won Suk ; Moon, Sang‐Jin ; Park, Taiho ; Kim, Hong Il ; Lee, Jong‐Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-542828e08d165fcac1e583b0dc7fbae93faae41dae66c91e52818bbc1bbd7a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>bimolecular recombination</topic><topic>Butyric acid</topic><topic>Chlorine</topic><topic>Energy conversion efficiency</topic><topic>fill factor</topic><topic>Heterojunctions</topic><topic>Interpenetrating networks</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>tandem solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Seung Un</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Cho, Ara</creatorcontrib><creatorcontrib>Lee, HyunKyung</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Lee, Hang Ken</creatorcontrib><creatorcontrib>Lee, Sang Kyu</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Moon, Sang‐Jin</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><creatorcontrib>Kim, Hong Il</creatorcontrib><creatorcontrib>Lee, Jong‐Cheol</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Seung Un</au><au>Abbas, Zaheer</au><au>Cho, Ara</au><au>Lee, HyunKyung</au><au>Song, Chang Eun</au><au>Lee, Hang Ken</au><au>Lee, Sang Kyu</au><au>Shin, Won Suk</au><au>Moon, Sang‐Jin</au><au>Park, Taiho</au><au>Kim, Hong Il</au><au>Lee, Jong‐Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency</atitle><jtitle>Advanced energy materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>14</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Small molecules have been recently highlighted as active materials owing to their facile synthesisis method, well‐defined molecular structure, and highly reproducible performance. In particular, optimizing bulk heterojunction (BHJ) morphologies is important to achieving high performance in solution‐processable small molecule solar cells (SM‐SCs). Herein, a series of benzodithiophene‐based active materials with different halogen atoms substituted at the end‐group, are reported, as well as how these halogen atoms affect the morphology of BHJ architectures through microstructure analyses. Materials with chlorine atoms show a well‐mixed morphology and interpenetrating networks when blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester, facilitating effective charge transportation. This controlled morphology helps attain excellent performance with a power conversion efficiency (PCE) of 10.5% and a highest fill factor of 78.0% without additives. In addition, it can be applied to two‐terminal (2T)‐tandem solar cells, attaining an outstanding PCE of up to 15.1% with complementary absorption in the field of the 2T‐tandem solar cells introducing the SM‐SCs. These results suggest that tailoring interactions with halogen atoms is an effective way to control BHJ architectures, thereby achieving remarkable performance in SM‐SCs.
A novel benzodithiophene (BDT)‐based small molecule (BDTID‐Cl) is used as an electron donor in small molecules solar cells (SM‐SCs). A record fill factor of 78.0% in SM‐SCs is achieved using BDTID‐Cl as a novel SM donor. In addition, a two‐terminal tandem solar cell is designed with a remarkable power conversion efficiency of 15.1% by complementary absorption of up to 1000 nm.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903846</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-04, Vol.10 (14), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2389134357 |
source | Access via Wiley Online Library |
subjects | Additives bimolecular recombination Butyric acid Chlorine Energy conversion efficiency fill factor Heterojunctions Interpenetrating networks Molecular structure Morphology Photovoltaic cells Solar cells tandem solar cells |
title | Strategic Halogen Substitution to Enable High‐Performance Small‐Molecule‐Based Tandem Solar Cell with over 15% Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20Halogen%20Substitution%20to%20Enable%20High%E2%80%90Performance%20Small%E2%80%90Molecule%E2%80%90Based%20Tandem%20Solar%20Cell%20with%20over%2015%25%20Efficiency&rft.jtitle=Advanced%20energy%20materials&rft.au=Ryu,%20Seung%20Un&rft.date=2020-04-01&rft.volume=10&rft.issue=14&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903846&rft_dat=%3Cproquest_cross%3E2389134357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389134357&rft_id=info:pmid/&rfr_iscdi=true |