Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics

Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-04, Vol.30 (15), p.n/a
Hauptverfasser: Wu, Hao, Zhang, Lu, Yang, Jinfan, Bo, Ruonan, Du, Hongxu, Lin, Kai, Zhang, Dalin, Ramachandran, Mythili, Shen, Yingbin, Xu, Yangxi, Xue, Xiangdong, Ma, Zhao, Lindstrom, Aaron Raymond, Carney, Randy, Lin, Tzu‐Yin, Li, Yuanpei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced functional materials
container_volume 30
creator Wu, Hao
Zhang, Lu
Yang, Jinfan
Bo, Ruonan
Du, Hongxu
Lin, Kai
Zhang, Dalin
Ramachandran, Mythili
Shen, Yingbin
Xu, Yangxi
Xue, Xiangdong
Ma, Zhao
Lindstrom, Aaron Raymond
Carney, Randy
Lin, Tzu‐Yin
Li, Yuanpei
description Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications. A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.
doi_str_mv 10.1002/adfm.201910348
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389119049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389119049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</originalsourceid><addsrcrecordid>eNqFkDtPw0AQhE8IJEKgpbZE7eTO58e5jPKASAFECBLdaXNeGwc_wp0t5I6Wjt_IL8EmKIiKalc73-xIQ8g5owNGqTOEKM4HDmUho9wVB6THfObbnDricL-zx2NyYsyGUhYE3O2R92VZQQXrDK1RkmhMoErL4vPtY15EtcKo3aZ5akx7HP4FxlCbb_2uxkI9pUViLTvNuq80VJg0Vlxqa4mQtcwqzdFaaVDPHXcDRbkFXaWqjZ00BeSpMqfkKIbM4NnP7JOH2XQ1vrIXt5fz8WhhKy64sAPhCxQADAPuc0UhUgJ9yoTHfQUu-uhGYRSiB_GaeZR5nhcoj_og4lYIGe-Ti93frS5fajSV3JS1LtpI6XARMhZSN2ypwY5SujRGYyy3Os1BN5JR2dUtu7rlvu7WEO4Mr2mGzT-0HE1m17_eLxNei1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389119049</pqid></control><display><type>article</type><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><source>Wiley-Blackwell Journals</source><creator>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</creator><creatorcontrib>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</creatorcontrib><description>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications. A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910348</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation‐caused quenching ; aggregation‐induced emission ; Biomedical materials ; Dynamic structural analysis ; Dynamics ; Emission ; Fluorescence ; fluorescence ratios ; Materials science ; Micelles ; Nanoparticles ; Nanostructure ; nanostructures ; Organelles ; Physiological effects ; Quenching ; Strategy ; Tracking</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (15), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</citedby><cites>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</cites><orcidid>0000-0003-2185-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yang, Jinfan</creatorcontrib><creatorcontrib>Bo, Ruonan</creatorcontrib><creatorcontrib>Du, Hongxu</creatorcontrib><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Ramachandran, Mythili</creatorcontrib><creatorcontrib>Shen, Yingbin</creatorcontrib><creatorcontrib>Xu, Yangxi</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Lindstrom, Aaron Raymond</creatorcontrib><creatorcontrib>Carney, Randy</creatorcontrib><creatorcontrib>Lin, Tzu‐Yin</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><title>Advanced functional materials</title><description>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications. A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</description><subject>Agglomeration</subject><subject>aggregation‐caused quenching</subject><subject>aggregation‐induced emission</subject><subject>Biomedical materials</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>fluorescence ratios</subject><subject>Materials science</subject><subject>Micelles</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Organelles</subject><subject>Physiological effects</subject><subject>Quenching</subject><subject>Strategy</subject><subject>Tracking</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPw0AQhE8IJEKgpbZE7eTO58e5jPKASAFECBLdaXNeGwc_wp0t5I6Wjt_IL8EmKIiKalc73-xIQ8g5owNGqTOEKM4HDmUho9wVB6THfObbnDricL-zx2NyYsyGUhYE3O2R92VZQQXrDK1RkmhMoErL4vPtY15EtcKo3aZ5akx7HP4FxlCbb_2uxkI9pUViLTvNuq80VJg0Vlxqa4mQtcwqzdFaaVDPHXcDRbkFXaWqjZ00BeSpMqfkKIbM4NnP7JOH2XQ1vrIXt5fz8WhhKy64sAPhCxQADAPuc0UhUgJ9yoTHfQUu-uhGYRSiB_GaeZR5nhcoj_og4lYIGe-Ti93frS5fajSV3JS1LtpI6XARMhZSN2ypwY5SujRGYyy3Os1BN5JR2dUtu7rlvu7WEO4Mr2mGzT-0HE1m17_eLxNei1Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wu, Hao</creator><creator>Zhang, Lu</creator><creator>Yang, Jinfan</creator><creator>Bo, Ruonan</creator><creator>Du, Hongxu</creator><creator>Lin, Kai</creator><creator>Zhang, Dalin</creator><creator>Ramachandran, Mythili</creator><creator>Shen, Yingbin</creator><creator>Xu, Yangxi</creator><creator>Xue, Xiangdong</creator><creator>Ma, Zhao</creator><creator>Lindstrom, Aaron Raymond</creator><creator>Carney, Randy</creator><creator>Lin, Tzu‐Yin</creator><creator>Li, Yuanpei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2185-5430</orcidid></search><sort><creationdate>20200401</creationdate><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><author>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation‐caused quenching</topic><topic>aggregation‐induced emission</topic><topic>Biomedical materials</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>fluorescence ratios</topic><topic>Materials science</topic><topic>Micelles</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Organelles</topic><topic>Physiological effects</topic><topic>Quenching</topic><topic>Strategy</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yang, Jinfan</creatorcontrib><creatorcontrib>Bo, Ruonan</creatorcontrib><creatorcontrib>Du, Hongxu</creatorcontrib><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Ramachandran, Mythili</creatorcontrib><creatorcontrib>Shen, Yingbin</creatorcontrib><creatorcontrib>Xu, Yangxi</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Lindstrom, Aaron Raymond</creatorcontrib><creatorcontrib>Carney, Randy</creatorcontrib><creatorcontrib>Lin, Tzu‐Yin</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Zhang, Lu</au><au>Yang, Jinfan</au><au>Bo, Ruonan</au><au>Du, Hongxu</au><au>Lin, Kai</au><au>Zhang, Dalin</au><au>Ramachandran, Mythili</au><au>Shen, Yingbin</au><au>Xu, Yangxi</au><au>Xue, Xiangdong</au><au>Ma, Zhao</au><au>Lindstrom, Aaron Raymond</au><au>Carney, Randy</au><au>Lin, Tzu‐Yin</au><au>Li, Yuanpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications. A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910348</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2185-5430</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-04, Vol.30 (15), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2389119049
source Wiley-Blackwell Journals
subjects Agglomeration
aggregation‐caused quenching
aggregation‐induced emission
Biomedical materials
Dynamic structural analysis
Dynamics
Emission
Fluorescence
fluorescence ratios
Materials science
Micelles
Nanoparticles
Nanostructure
nanostructures
Organelles
Physiological effects
Quenching
Strategy
Tracking
title Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotatable%20Aggregation%E2%80%90Induced%E2%80%90Emission/Aggregation%E2%80%90Caused%E2%80%90Quenching%20Ratio%20Strategy%20for%20Real%E2%80%90Time%20Tracking%20Nanoparticle%20Dynamics&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Hao&rft.date=2020-04-01&rft.volume=30&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910348&rft_dat=%3Cproquest_cross%3E2389119049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389119049&rft_id=info:pmid/&rfr_iscdi=true