Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics
Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A ro...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-04, Vol.30 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Wu, Hao Zhang, Lu Yang, Jinfan Bo, Ruonan Du, Hongxu Lin, Kai Zhang, Dalin Ramachandran, Mythili Shen, Yingbin Xu, Yangxi Xue, Xiangdong Ma, Zhao Lindstrom, Aaron Raymond Carney, Randy Lin, Tzu‐Yin Li, Yuanpei |
description | Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.
A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue. |
doi_str_mv | 10.1002/adfm.201910348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389119049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389119049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</originalsourceid><addsrcrecordid>eNqFkDtPw0AQhE8IJEKgpbZE7eTO58e5jPKASAFECBLdaXNeGwc_wp0t5I6Wjt_IL8EmKIiKalc73-xIQ8g5owNGqTOEKM4HDmUho9wVB6THfObbnDricL-zx2NyYsyGUhYE3O2R92VZQQXrDK1RkmhMoErL4vPtY15EtcKo3aZ5akx7HP4FxlCbb_2uxkI9pUViLTvNuq80VJg0Vlxqa4mQtcwqzdFaaVDPHXcDRbkFXaWqjZ00BeSpMqfkKIbM4NnP7JOH2XQ1vrIXt5fz8WhhKy64sAPhCxQADAPuc0UhUgJ9yoTHfQUu-uhGYRSiB_GaeZR5nhcoj_og4lYIGe-Ti93frS5fajSV3JS1LtpI6XARMhZSN2ypwY5SujRGYyy3Os1BN5JR2dUtu7rlvu7WEO4Mr2mGzT-0HE1m17_eLxNei1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389119049</pqid></control><display><type>article</type><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><source>Wiley-Blackwell Journals</source><creator>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</creator><creatorcontrib>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</creatorcontrib><description>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.
A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910348</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation‐caused quenching ; aggregation‐induced emission ; Biomedical materials ; Dynamic structural analysis ; Dynamics ; Emission ; Fluorescence ; fluorescence ratios ; Materials science ; Micelles ; Nanoparticles ; Nanostructure ; nanostructures ; Organelles ; Physiological effects ; Quenching ; Strategy ; Tracking</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (15), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</citedby><cites>FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</cites><orcidid>0000-0003-2185-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yang, Jinfan</creatorcontrib><creatorcontrib>Bo, Ruonan</creatorcontrib><creatorcontrib>Du, Hongxu</creatorcontrib><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Ramachandran, Mythili</creatorcontrib><creatorcontrib>Shen, Yingbin</creatorcontrib><creatorcontrib>Xu, Yangxi</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Lindstrom, Aaron Raymond</creatorcontrib><creatorcontrib>Carney, Randy</creatorcontrib><creatorcontrib>Lin, Tzu‐Yin</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><title>Advanced functional materials</title><description>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.
A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</description><subject>Agglomeration</subject><subject>aggregation‐caused quenching</subject><subject>aggregation‐induced emission</subject><subject>Biomedical materials</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>fluorescence ratios</subject><subject>Materials science</subject><subject>Micelles</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Organelles</subject><subject>Physiological effects</subject><subject>Quenching</subject><subject>Strategy</subject><subject>Tracking</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPw0AQhE8IJEKgpbZE7eTO58e5jPKASAFECBLdaXNeGwc_wp0t5I6Wjt_IL8EmKIiKalc73-xIQ8g5owNGqTOEKM4HDmUho9wVB6THfObbnDricL-zx2NyYsyGUhYE3O2R92VZQQXrDK1RkmhMoErL4vPtY15EtcKo3aZ5akx7HP4FxlCbb_2uxkI9pUViLTvNuq80VJg0Vlxqa4mQtcwqzdFaaVDPHXcDRbkFXaWqjZ00BeSpMqfkKIbM4NnP7JOH2XQ1vrIXt5fz8WhhKy64sAPhCxQADAPuc0UhUgJ9yoTHfQUu-uhGYRSiB_GaeZR5nhcoj_og4lYIGe-Ti93frS5fajSV3JS1LtpI6XARMhZSN2ypwY5SujRGYyy3Os1BN5JR2dUtu7rlvu7WEO4Mr2mGzT-0HE1m17_eLxNei1Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wu, Hao</creator><creator>Zhang, Lu</creator><creator>Yang, Jinfan</creator><creator>Bo, Ruonan</creator><creator>Du, Hongxu</creator><creator>Lin, Kai</creator><creator>Zhang, Dalin</creator><creator>Ramachandran, Mythili</creator><creator>Shen, Yingbin</creator><creator>Xu, Yangxi</creator><creator>Xue, Xiangdong</creator><creator>Ma, Zhao</creator><creator>Lindstrom, Aaron Raymond</creator><creator>Carney, Randy</creator><creator>Lin, Tzu‐Yin</creator><creator>Li, Yuanpei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2185-5430</orcidid></search><sort><creationdate>20200401</creationdate><title>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</title><author>Wu, Hao ; Zhang, Lu ; Yang, Jinfan ; Bo, Ruonan ; Du, Hongxu ; Lin, Kai ; Zhang, Dalin ; Ramachandran, Mythili ; Shen, Yingbin ; Xu, Yangxi ; Xue, Xiangdong ; Ma, Zhao ; Lindstrom, Aaron Raymond ; Carney, Randy ; Lin, Tzu‐Yin ; Li, Yuanpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-7868e8aa1e7363c0adc8e6018536ca4e6e4d9d9e5afb15015557c506a8f4d9913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation‐caused quenching</topic><topic>aggregation‐induced emission</topic><topic>Biomedical materials</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>fluorescence ratios</topic><topic>Materials science</topic><topic>Micelles</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Organelles</topic><topic>Physiological effects</topic><topic>Quenching</topic><topic>Strategy</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Yang, Jinfan</creatorcontrib><creatorcontrib>Bo, Ruonan</creatorcontrib><creatorcontrib>Du, Hongxu</creatorcontrib><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Ramachandran, Mythili</creatorcontrib><creatorcontrib>Shen, Yingbin</creatorcontrib><creatorcontrib>Xu, Yangxi</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Lindstrom, Aaron Raymond</creatorcontrib><creatorcontrib>Carney, Randy</creatorcontrib><creatorcontrib>Lin, Tzu‐Yin</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Zhang, Lu</au><au>Yang, Jinfan</au><au>Bo, Ruonan</au><au>Du, Hongxu</au><au>Lin, Kai</au><au>Zhang, Dalin</au><au>Ramachandran, Mythili</au><au>Shen, Yingbin</au><au>Xu, Yangxi</au><au>Xue, Xiangdong</au><au>Ma, Zhao</au><au>Lindstrom, Aaron Raymond</au><au>Carney, Randy</au><au>Lin, Tzu‐Yin</au><au>Li, Yuanpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.
A rotatable fluorescent ratio strategy that integrates aggregation‐induced emission and aggregation‐caused quenching into one nanostructured system, termed AAR, is introduced. Using this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4, is developed to track the spatiotemporal distribution and structural dynamics of living cells and animal tissue.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910348</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2185-5430</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-04, Vol.30 (15), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2389119049 |
source | Wiley-Blackwell Journals |
subjects | Agglomeration aggregation‐caused quenching aggregation‐induced emission Biomedical materials Dynamic structural analysis Dynamics Emission Fluorescence fluorescence ratios Materials science Micelles Nanoparticles Nanostructure nanostructures Organelles Physiological effects Quenching Strategy Tracking |
title | Rotatable Aggregation‐Induced‐Emission/Aggregation‐Caused‐Quenching Ratio Strategy for Real‐Time Tracking Nanoparticle Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotatable%20Aggregation%E2%80%90Induced%E2%80%90Emission/Aggregation%E2%80%90Caused%E2%80%90Quenching%20Ratio%20Strategy%20for%20Real%E2%80%90Time%20Tracking%20Nanoparticle%20Dynamics&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Hao&rft.date=2020-04-01&rft.volume=30&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910348&rft_dat=%3Cproquest_cross%3E2389119049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389119049&rft_id=info:pmid/&rfr_iscdi=true |