Mapping neutron star data to the equation of state using the deep neural network

The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star. While first-principles evaluation of the equation of state of such matter remains as one of the long-standing problems in nuclear theory, evaluation in light of neutron star phenomenology i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-03, Vol.101 (5), p.1, Article 054016
Hauptverfasser: Fujimoto, Yuki, Fukushima, Kenji, Murase, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1
container_title Physical review. D
container_volume 101
creator Fujimoto, Yuki
Fukushima, Kenji
Murase, Koichi
description The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star. While first-principles evaluation of the equation of state of such matter remains as one of the long-standing problems in nuclear theory, evaluation in light of neutron star phenomenology is feasible. Here we show results from a novel theoretical technique to utilize a deep neural network with supervised learning. We input up-to-date observational data from neutron star x-ray radiations into the trained neural network and estimate a relation between the pressure and the mass density. Our results are consistent with extrapolation from the conventional nuclear models and the experimental bound on the tidal deformability inferred from gravitational wave observation.
doi_str_mv 10.1103/PhysRevD.101.054016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388878369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388878369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f9090f145356c344c533761b4f27c6dc45ce2e21155a14f590dabf61956f241d3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgmPsFvgR87ry3-Wj7KPNjwsQh-hyyNnGbs-mSVNm_N2Xq0zmcj3vhEHKJMEUEdr1cH8KL-bqdIuAUBAeUJ2SU8wIygLw6_ecI52QSwhYSlVAViCOyfNJdt2nfaWv66F1LQ9SeNjpqGh2Na0PNvtdxkxxnBzMa2oehMHiNMd3Q9HqXIH47_3FBzqzeBTP5xTF5u797nc2zxfPD4-xmkdWMs5jZCiqwyAUTMim8FowVElfc5kUtm5qL2uQmRxRCI7eigkavrMRKSJtzbNiYXB3vdt7texOi2rret-mlyllZlkXJZJVS7JiqvQvBG6s6v_nU_qAQ1LCe-lsvCaiO67EfQc5jWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388878369</pqid></control><display><type>article</type><title>Mapping neutron star data to the equation of state using the deep neural network</title><source>American Physical Society Journals</source><creator>Fujimoto, Yuki ; Fukushima, Kenji ; Murase, Koichi</creator><creatorcontrib>Fujimoto, Yuki ; Fukushima, Kenji ; Murase, Koichi</creatorcontrib><description>The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star. While first-principles evaluation of the equation of state of such matter remains as one of the long-standing problems in nuclear theory, evaluation in light of neutron star phenomenology is feasible. Here we show results from a novel theoretical technique to utilize a deep neural network with supervised learning. We input up-to-date observational data from neutron star x-ray radiations into the trained neural network and estimate a relation between the pressure and the mass density. Our results are consistent with extrapolation from the conventional nuclear models and the experimental bound on the tidal deformability inferred from gravitational wave observation.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.054016</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Artificial neural networks ; Equations of state ; First principles ; Formability ; Gravitational waves ; Machine learning ; Mapping ; Neural networks ; Neutron stars ; Neutrons ; Nuclear models ; Phenomenology</subject><ispartof>Physical review. D, 2020-03, Vol.101 (5), p.1, Article 054016</ispartof><rights>Copyright American Physical Society Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f9090f145356c344c533761b4f27c6dc45ce2e21155a14f590dabf61956f241d3</citedby><cites>FETCH-LOGICAL-c343t-f9090f145356c344c533761b4f27c6dc45ce2e21155a14f590dabf61956f241d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Fujimoto, Yuki</creatorcontrib><creatorcontrib>Fukushima, Kenji</creatorcontrib><creatorcontrib>Murase, Koichi</creatorcontrib><title>Mapping neutron star data to the equation of state using the deep neural network</title><title>Physical review. D</title><description>The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star. While first-principles evaluation of the equation of state of such matter remains as one of the long-standing problems in nuclear theory, evaluation in light of neutron star phenomenology is feasible. Here we show results from a novel theoretical technique to utilize a deep neural network with supervised learning. We input up-to-date observational data from neutron star x-ray radiations into the trained neural network and estimate a relation between the pressure and the mass density. Our results are consistent with extrapolation from the conventional nuclear models and the experimental bound on the tidal deformability inferred from gravitational wave observation.</description><subject>Artificial neural networks</subject><subject>Equations of state</subject><subject>First principles</subject><subject>Formability</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear models</subject><subject>Phenomenology</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UF1LwzAUDaLgmPsFvgR87ry3-Wj7KPNjwsQh-hyyNnGbs-mSVNm_N2Xq0zmcj3vhEHKJMEUEdr1cH8KL-bqdIuAUBAeUJ2SU8wIygLw6_ecI52QSwhYSlVAViCOyfNJdt2nfaWv66F1LQ9SeNjpqGh2Na0PNvtdxkxxnBzMa2oehMHiNMd3Q9HqXIH47_3FBzqzeBTP5xTF5u797nc2zxfPD4-xmkdWMs5jZCiqwyAUTMim8FowVElfc5kUtm5qL2uQmRxRCI7eigkavrMRKSJtzbNiYXB3vdt7texOi2rret-mlyllZlkXJZJVS7JiqvQvBG6s6v_nU_qAQ1LCe-lsvCaiO67EfQc5jWA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Fujimoto, Yuki</creator><creator>Fukushima, Kenji</creator><creator>Murase, Koichi</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200301</creationdate><title>Mapping neutron star data to the equation of state using the deep neural network</title><author>Fujimoto, Yuki ; Fukushima, Kenji ; Murase, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f9090f145356c344c533761b4f27c6dc45ce2e21155a14f590dabf61956f241d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Equations of state</topic><topic>First principles</topic><topic>Formability</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear models</topic><topic>Phenomenology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimoto, Yuki</creatorcontrib><creatorcontrib>Fukushima, Kenji</creatorcontrib><creatorcontrib>Murase, Koichi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimoto, Yuki</au><au>Fukushima, Kenji</au><au>Murase, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping neutron star data to the equation of state using the deep neural network</atitle><jtitle>Physical review. D</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>101</volume><issue>5</issue><spage>1</spage><pages>1-</pages><artnum>054016</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The densest state of matter in the Universe is uniquely realized inside the central cores of the neutron star. While first-principles evaluation of the equation of state of such matter remains as one of the long-standing problems in nuclear theory, evaluation in light of neutron star phenomenology is feasible. Here we show results from a novel theoretical technique to utilize a deep neural network with supervised learning. We input up-to-date observational data from neutron star x-ray radiations into the trained neural network and estimate a relation between the pressure and the mass density. Our results are consistent with extrapolation from the conventional nuclear models and the experimental bound on the tidal deformability inferred from gravitational wave observation.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.054016</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-03, Vol.101 (5), p.1, Article 054016
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2388878369
source American Physical Society Journals
subjects Artificial neural networks
Equations of state
First principles
Formability
Gravitational waves
Machine learning
Mapping
Neural networks
Neutron stars
Neutrons
Nuclear models
Phenomenology
title Mapping neutron star data to the equation of state using the deep neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20neutron%20star%20data%20to%20the%20equation%20of%20state%20using%20the%20deep%20neural%20network&rft.jtitle=Physical%20review.%20D&rft.au=Fujimoto,%20Yuki&rft.date=2020-03-01&rft.volume=101&rft.issue=5&rft.spage=1&rft.pages=1-&rft.artnum=054016&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.054016&rft_dat=%3Cproquest_cross%3E2388878369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388878369&rft_id=info:pmid/&rfr_iscdi=true