IR dynamics and entanglement entropy
We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-03, Vol.101 (6), p.1, Article 065006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 101 |
creator | Tomaras, Theodore N. Toumbas, Nicolaos |
description | We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit. |
doi_str_mv | 10.1103/PhysRevD.101.065006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388872387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388872387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZcFve46k2w2yVGq1kJBKXoOIclqS_fDZCvsvzdl1cvMM8PLDDyEXCMUiMDuXj_HuPXfDwUCFlBxgOqMzGgpIAeg6vyfES7JIsY9JKxACcQZuV1vMze2ptnZmJnWZb4dTPtx8E2C0xC6frwiF7U5RL_47XPy_vT4tnzONy-r9fJ-k1tG6ZAzxV3phWFOQqmcRO9RKs-c8xJlxZWwKAxYoWrJneWKW2upwYojcx4cm5Ob6W4fuq-jj4Ped8fQppeaMimlSFWkFJtSNnQxBl_rPuwaE0aNoE9G9J-RtEA9GWE_-6dT4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388872387</pqid></control><display><type>article</type><title>IR dynamics and entanglement entropy</title><source>American Physical Society Journals</source><creator>Tomaras, Theodore N. ; Toumbas, Nicolaos</creator><creatorcontrib>Tomaras, Theodore N. ; Toumbas, Nicolaos</creatorcontrib><description>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.065006</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atoms & subatomic particles ; Charged particles ; Entanglement ; Entropy ; Perturbation theory ; Photon emission ; Photons ; Tracing</subject><ispartof>Physical review. D, 2020-03, Vol.101 (6), p.1, Article 065006</ispartof><rights>Copyright American Physical Society Mar 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</citedby><cites>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</cites><orcidid>0000-0002-5761-122X ; 0000-0001-8879-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Tomaras, Theodore N.</creatorcontrib><creatorcontrib>Toumbas, Nicolaos</creatorcontrib><title>IR dynamics and entanglement entropy</title><title>Physical review. D</title><description>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</description><subject>Atoms & subatomic particles</subject><subject>Charged particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Perturbation theory</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Tracing</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZcFve46k2w2yVGq1kJBKXoOIclqS_fDZCvsvzdl1cvMM8PLDDyEXCMUiMDuXj_HuPXfDwUCFlBxgOqMzGgpIAeg6vyfES7JIsY9JKxACcQZuV1vMze2ptnZmJnWZb4dTPtx8E2C0xC6frwiF7U5RL_47XPy_vT4tnzONy-r9fJ-k1tG6ZAzxV3phWFOQqmcRO9RKs-c8xJlxZWwKAxYoWrJneWKW2upwYojcx4cm5Ob6W4fuq-jj4Ped8fQppeaMimlSFWkFJtSNnQxBl_rPuwaE0aNoE9G9J-RtEA9GWE_-6dT4A</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Tomaras, Theodore N.</creator><creator>Toumbas, Nicolaos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5761-122X</orcidid><orcidid>https://orcid.org/0000-0001-8879-7330</orcidid></search><sort><creationdate>20200315</creationdate><title>IR dynamics and entanglement entropy</title><author>Tomaras, Theodore N. ; Toumbas, Nicolaos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atoms & subatomic particles</topic><topic>Charged particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Perturbation theory</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomaras, Theodore N.</creatorcontrib><creatorcontrib>Toumbas, Nicolaos</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomaras, Theodore N.</au><au>Toumbas, Nicolaos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IR dynamics and entanglement entropy</atitle><jtitle>Physical review. D</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>065006</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.065006</doi><orcidid>https://orcid.org/0000-0002-5761-122X</orcidid><orcidid>https://orcid.org/0000-0001-8879-7330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-03, Vol.101 (6), p.1, Article 065006 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2388872387 |
source | American Physical Society Journals |
subjects | Atoms & subatomic particles Charged particles Entanglement Entropy Perturbation theory Photon emission Photons Tracing |
title | IR dynamics and entanglement entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IR%20dynamics%20and%20entanglement%20entropy&rft.jtitle=Physical%20review.%20D&rft.au=Tomaras,%20Theodore%20N.&rft.date=2020-03-15&rft.volume=101&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=065006&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.065006&rft_dat=%3Cproquest_cross%3E2388872387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388872387&rft_id=info:pmid/&rfr_iscdi=true |