IR dynamics and entanglement entropy

We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-03, Vol.101 (6), p.1, Article 065006
Hauptverfasser: Tomaras, Theodore N., Toumbas, Nicolaos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title Physical review. D
container_volume 101
creator Tomaras, Theodore N.
Toumbas, Nicolaos
description We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.
doi_str_mv 10.1103/PhysRevD.101.065006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388872387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388872387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZcFve46k2w2yVGq1kJBKXoOIclqS_fDZCvsvzdl1cvMM8PLDDyEXCMUiMDuXj_HuPXfDwUCFlBxgOqMzGgpIAeg6vyfES7JIsY9JKxACcQZuV1vMze2ptnZmJnWZb4dTPtx8E2C0xC6frwiF7U5RL_47XPy_vT4tnzONy-r9fJ-k1tG6ZAzxV3phWFOQqmcRO9RKs-c8xJlxZWwKAxYoWrJneWKW2upwYojcx4cm5Ob6W4fuq-jj4Ped8fQppeaMimlSFWkFJtSNnQxBl_rPuwaE0aNoE9G9J-RtEA9GWE_-6dT4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388872387</pqid></control><display><type>article</type><title>IR dynamics and entanglement entropy</title><source>American Physical Society Journals</source><creator>Tomaras, Theodore N. ; Toumbas, Nicolaos</creator><creatorcontrib>Tomaras, Theodore N. ; Toumbas, Nicolaos</creatorcontrib><description>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.065006</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atoms &amp; subatomic particles ; Charged particles ; Entanglement ; Entropy ; Perturbation theory ; Photon emission ; Photons ; Tracing</subject><ispartof>Physical review. D, 2020-03, Vol.101 (6), p.1, Article 065006</ispartof><rights>Copyright American Physical Society Mar 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</citedby><cites>FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</cites><orcidid>0000-0002-5761-122X ; 0000-0001-8879-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Tomaras, Theodore N.</creatorcontrib><creatorcontrib>Toumbas, Nicolaos</creatorcontrib><title>IR dynamics and entanglement entropy</title><title>Physical review. D</title><description>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</description><subject>Atoms &amp; subatomic particles</subject><subject>Charged particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Perturbation theory</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Tracing</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZcFve46k2w2yVGq1kJBKXoOIclqS_fDZCvsvzdl1cvMM8PLDDyEXCMUiMDuXj_HuPXfDwUCFlBxgOqMzGgpIAeg6vyfES7JIsY9JKxACcQZuV1vMze2ptnZmJnWZb4dTPtx8E2C0xC6frwiF7U5RL_47XPy_vT4tnzONy-r9fJ-k1tG6ZAzxV3phWFOQqmcRO9RKs-c8xJlxZWwKAxYoWrJneWKW2upwYojcx4cm5Ob6W4fuq-jj4Ped8fQppeaMimlSFWkFJtSNnQxBl_rPuwaE0aNoE9G9J-RtEA9GWE_-6dT4A</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Tomaras, Theodore N.</creator><creator>Toumbas, Nicolaos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5761-122X</orcidid><orcidid>https://orcid.org/0000-0001-8879-7330</orcidid></search><sort><creationdate>20200315</creationdate><title>IR dynamics and entanglement entropy</title><author>Tomaras, Theodore N. ; Toumbas, Nicolaos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-395d4e7a3d8049d81ee189e3dde8186597c17a0c79f85dc595ccc2a16513de0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Charged particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Perturbation theory</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomaras, Theodore N.</creatorcontrib><creatorcontrib>Toumbas, Nicolaos</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomaras, Theodore N.</au><au>Toumbas, Nicolaos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IR dynamics and entanglement entropy</atitle><jtitle>Physical review. D</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>065006</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: (i) soft photons with energies less than a characteristic infrared scale Ed present in the clouds accompanying the asymptotic charged particles, and (ii) sufficiently low energy photons with energies greater than Ed, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand, infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.065006</doi><orcidid>https://orcid.org/0000-0002-5761-122X</orcidid><orcidid>https://orcid.org/0000-0001-8879-7330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-03, Vol.101 (6), p.1, Article 065006
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2388872387
source American Physical Society Journals
subjects Atoms & subatomic particles
Charged particles
Entanglement
Entropy
Perturbation theory
Photon emission
Photons
Tracing
title IR dynamics and entanglement entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IR%20dynamics%20and%20entanglement%20entropy&rft.jtitle=Physical%20review.%20D&rft.au=Tomaras,%20Theodore%20N.&rft.date=2020-03-15&rft.volume=101&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=065006&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.065006&rft_dat=%3Cproquest_cross%3E2388872387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388872387&rft_id=info:pmid/&rfr_iscdi=true