A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation
Summary Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares p...
Gespeichert in:
Veröffentlicht in: | International statistical review 2020-04, Vol.88 (1), p.29-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | International statistical review |
container_volume | 88 |
creator | Hobolth, Asger Guo, Qianyun Kousholt, Astrid Jensen, Jens Ledet |
description | Summary
Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares problem fall in two categories. The first category is iterative algorithms, which include algorithms such as the majorise–minimise (MM) algorithm, coordinate descent, gradient descent and the Févotte‐Cemgil expectation–maximisation (FC‐EM) algorithm. We introduce a new family of iterative updates based on a generalisation of the FC‐EM algorithm. The coordinate descent, gradient descent and FC‐EM algorithms are special cases of this new EM family of iterative procedures. Curiously, we show that the MM algorithm is never a member of our general EM algorithm. The second category is based on cone projection. We describe and prove a cone projection algorithm tailored to the non‐negative least square problem. We compare the algorithms on a test case and on the problem of identifying mutational signatures in human cancer. We generally find that cone projection is an attractive choice. Furthermore, in the cancer application, we find that a mix‐and‐match strategy performs better than running each algorithm in isolation. |
doi_str_mv | 10.1111/insr.12331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388650641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388650641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-f550525f1489e621cf14486b5a15e1d7c30fdc1cdf941fc190a99467d71edf273</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqxScIeBO2ZpLNfhxLsVqoFdQePIW4m9TUblKTrbU3H8Fn9EmMrmdzmTD8Zgb-CJ0CGUB8F8YGPwDKGOyhHuQcEl5Qto96hJEsyXOWHqKjEJaEEEaLtIceh3hujd4Zu8BjLxu1df4FS1vjkWvW0pvgLHYaD1cL50373ASsncczZ78-Pq1ayNa8KXwjW2_e8VhWbVQhNp09RgdaroI6-at9NB9fPoyuk-nt1WQ0nCYVIwCJ5pxwyjWkRakyClX8pUX2xCVwBXUela4rqGpdpqArKIksyzTL6xxUrWnO-uis27v27nWjQiuWbuNtPCkoK4qMkyyFqM47VXkXgldarL1ppN8JIOInOvETnfiNLmLo8Nas1O4fKSaz-7tu5huRX3IV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388650641</pqid></control><display><type>article</type><title>A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hobolth, Asger ; Guo, Qianyun ; Kousholt, Astrid ; Jensen, Jens Ledet</creator><creatorcontrib>Hobolth, Asger ; Guo, Qianyun ; Kousholt, Astrid ; Jensen, Jens Ledet</creatorcontrib><description>Summary
Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares problem fall in two categories. The first category is iterative algorithms, which include algorithms such as the majorise–minimise (MM) algorithm, coordinate descent, gradient descent and the Févotte‐Cemgil expectation–maximisation (FC‐EM) algorithm. We introduce a new family of iterative updates based on a generalisation of the FC‐EM algorithm. The coordinate descent, gradient descent and FC‐EM algorithms are special cases of this new EM family of iterative procedures. Curiously, we show that the MM algorithm is never a member of our general EM algorithm. The second category is based on cone projection. We describe and prove a cone projection algorithm tailored to the non‐negative least square problem. We compare the algorithms on a test case and on the problem of identifying mutational signatures in human cancer. We generally find that cone projection is an attractive choice. Furthermore, in the cancer application, we find that a mix‐and‐match strategy performs better than running each algorithm in isolation.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12331</identifier><language>eng</language><publisher>Hoboken: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Cancer ; Cone projection ; EM‐algorithm ; Factorization ; Iterative algorithms ; Iterative methods ; Least squares method ; mutational signatures ; non‐negative least squares (NLS) ; non‐negative matrix factorisation (NMF) ; Optimization ; Parameter estimation ; Projection</subject><ispartof>International statistical review, 2020-04, Vol.88 (1), p.29-53</ispartof><rights>2019 The Authors. International Statistical Review © 2019 International Statistical Institute</rights><rights>2020 International Statistical Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-f550525f1489e621cf14486b5a15e1d7c30fdc1cdf941fc190a99467d71edf273</citedby><cites>FETCH-LOGICAL-c3011-f550525f1489e621cf14486b5a15e1d7c30fdc1cdf941fc190a99467d71edf273</cites><orcidid>0000-0003-4056-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Finsr.12331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Finsr.12331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hobolth, Asger</creatorcontrib><creatorcontrib>Guo, Qianyun</creatorcontrib><creatorcontrib>Kousholt, Astrid</creatorcontrib><creatorcontrib>Jensen, Jens Ledet</creatorcontrib><title>A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation</title><title>International statistical review</title><description>Summary
Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares problem fall in two categories. The first category is iterative algorithms, which include algorithms such as the majorise–minimise (MM) algorithm, coordinate descent, gradient descent and the Févotte‐Cemgil expectation–maximisation (FC‐EM) algorithm. We introduce a new family of iterative updates based on a generalisation of the FC‐EM algorithm. The coordinate descent, gradient descent and FC‐EM algorithms are special cases of this new EM family of iterative procedures. Curiously, we show that the MM algorithm is never a member of our general EM algorithm. The second category is based on cone projection. We describe and prove a cone projection algorithm tailored to the non‐negative least square problem. We compare the algorithms on a test case and on the problem of identifying mutational signatures in human cancer. We generally find that cone projection is an attractive choice. Furthermore, in the cancer application, we find that a mix‐and‐match strategy performs better than running each algorithm in isolation.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Cone projection</subject><subject>EM‐algorithm</subject><subject>Factorization</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Least squares method</subject><subject>mutational signatures</subject><subject>non‐negative least squares (NLS)</subject><subject>non‐negative matrix factorisation (NMF)</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Projection</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqxScIeBO2ZpLNfhxLsVqoFdQePIW4m9TUblKTrbU3H8Fn9EmMrmdzmTD8Zgb-CJ0CGUB8F8YGPwDKGOyhHuQcEl5Qto96hJEsyXOWHqKjEJaEEEaLtIceh3hujd4Zu8BjLxu1df4FS1vjkWvW0pvgLHYaD1cL50373ASsncczZ78-Pq1ayNa8KXwjW2_e8VhWbVQhNp09RgdaroI6-at9NB9fPoyuk-nt1WQ0nCYVIwCJ5pxwyjWkRakyClX8pUX2xCVwBXUela4rqGpdpqArKIksyzTL6xxUrWnO-uis27v27nWjQiuWbuNtPCkoK4qMkyyFqM47VXkXgldarL1ppN8JIOInOvETnfiNLmLo8Nas1O4fKSaz-7tu5huRX3IV</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Hobolth, Asger</creator><creator>Guo, Qianyun</creator><creator>Kousholt, Astrid</creator><creator>Jensen, Jens Ledet</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4056-1286</orcidid></search><sort><creationdate>202004</creationdate><title>A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation</title><author>Hobolth, Asger ; Guo, Qianyun ; Kousholt, Astrid ; Jensen, Jens Ledet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-f550525f1489e621cf14486b5a15e1d7c30fdc1cdf941fc190a99467d71edf273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Cone projection</topic><topic>EM‐algorithm</topic><topic>Factorization</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Least squares method</topic><topic>mutational signatures</topic><topic>non‐negative least squares (NLS)</topic><topic>non‐negative matrix factorisation (NMF)</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobolth, Asger</creatorcontrib><creatorcontrib>Guo, Qianyun</creatorcontrib><creatorcontrib>Kousholt, Astrid</creatorcontrib><creatorcontrib>Jensen, Jens Ledet</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobolth, Asger</au><au>Guo, Qianyun</au><au>Kousholt, Astrid</au><au>Jensen, Jens Ledet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation</atitle><jtitle>International statistical review</jtitle><date>2020-04</date><risdate>2020</risdate><volume>88</volume><issue>1</issue><spage>29</spage><epage>53</epage><pages>29-53</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Summary
Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares problem fall in two categories. The first category is iterative algorithms, which include algorithms such as the majorise–minimise (MM) algorithm, coordinate descent, gradient descent and the Févotte‐Cemgil expectation–maximisation (FC‐EM) algorithm. We introduce a new family of iterative updates based on a generalisation of the FC‐EM algorithm. The coordinate descent, gradient descent and FC‐EM algorithms are special cases of this new EM family of iterative procedures. Curiously, we show that the MM algorithm is never a member of our general EM algorithm. The second category is based on cone projection. We describe and prove a cone projection algorithm tailored to the non‐negative least square problem. We compare the algorithms on a test case and on the problem of identifying mutational signatures in human cancer. We generally find that cone projection is an attractive choice. Furthermore, in the cancer application, we find that a mix‐and‐match strategy performs better than running each algorithm in isolation.</abstract><cop>Hoboken</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/insr.12331</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4056-1286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-7734 |
ispartof | International statistical review, 2020-04, Vol.88 (1), p.29-53 |
issn | 0306-7734 1751-5823 |
language | eng |
recordid | cdi_proquest_journals_2388650641 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Cancer Cone projection EM‐algorithm Factorization Iterative algorithms Iterative methods Least squares method mutational signatures non‐negative least squares (NLS) non‐negative matrix factorisation (NMF) Optimization Parameter estimation Projection |
title | A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unifying%20Framework%20and%20Comparison%20of%20Algorithms%20for%20Non%E2%80%90negative%20Matrix%20Factorisation&rft.jtitle=International%20statistical%20review&rft.au=Hobolth,%20Asger&rft.date=2020-04&rft.volume=88&rft.issue=1&rft.spage=29&rft.epage=53&rft.pages=29-53&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12331&rft_dat=%3Cproquest_cross%3E2388650641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388650641&rft_id=info:pmid/&rfr_iscdi=true |