Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime

Summary In this study, we suggest pretest and shrinkage methods based on the generalised ridge regression estimation that is suitable for both multicollinear and high‐dimensional problems. We review and develop theoretical results for some of the shrinkage estimators. The relative performance of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2020-04, Vol.88 (1), p.229-251
Hauptverfasser: Yüzbaşı, Bahadır, Arashi, Mohammad, Ejaz Ahmed, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 229
container_title International statistical review
container_volume 88
creator Yüzbaşı, Bahadır
Arashi, Mohammad
Ejaz Ahmed, S.
description Summary In this study, we suggest pretest and shrinkage methods based on the generalised ridge regression estimation that is suitable for both multicollinear and high‐dimensional problems. We review and develop theoretical results for some of the shrinkage estimators. The relative performance of the shrinkage estimators to some penalty methods is compared and assessed by both simulation and real‐data analysis. We show that the suggested methods can be accounted as good competitors to regularisation techniques, by means of a mean squared error of estimation and prediction error. A thorough comparison of pretest and shrinkage estimators based on the maximum likelihood method to the penalty methods. In this paper, we extend the comparison outlined in his work using the least squares method for the generalised ridge regression.
doi_str_mv 10.1111/insr.12351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388650505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388650505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-3654ab223a06bebd143e864c9bb56227a66729454af3ac1de30ff6c2cfe533493</originalsourceid><addsrcrecordid>eNp90EtOwzAQBmALgUQpbDhBJHZIaW1P4qTsUOlLKiC1sLacZJK6pEmxU1XdcQTOyElwG9Z4FrbkzzPyT8gtoz3mVl9X1vQYh5CdkQ6LQuaHMYdz0qFAhR9FEFySK2vXlFLgcdAh6XJldPWhCvRGttEb1ei68paNUQ0WGq2nK2-CFRpVaouZt9CZowssDFp7pM91hqV98Ob1vj_Vxern6_tJb7A6XTrnztfkIlelxZu_vUvex6O34dSfv05mw8e5nwJlzAcRBirhHBQVCSYZCwBjEaSDJAkF55ESIuKDwKEcVMoyBJrnIuVpjiFAMIAuuWv7bk39uUPbyHW9M5UbKTnEsQipK6fuW5Wa2lqDudwa929zkIzKY4jyGKI8hegwa_Fel3j4R8rZy3LRvvkF1H51sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388650505</pqid></control><display><type>article</type><title>Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime</title><source>Wiley Journals</source><creator>Yüzbaşı, Bahadır ; Arashi, Mohammad ; Ejaz Ahmed, S.</creator><creatorcontrib>Yüzbaşı, Bahadır ; Arashi, Mohammad ; Ejaz Ahmed, S.</creatorcontrib><description>Summary In this study, we suggest pretest and shrinkage methods based on the generalised ridge regression estimation that is suitable for both multicollinear and high‐dimensional problems. We review and develop theoretical results for some of the shrinkage estimators. The relative performance of the shrinkage estimators to some penalty methods is compared and assessed by both simulation and real‐data analysis. We show that the suggested methods can be accounted as good competitors to regularisation techniques, by means of a mean squared error of estimation and prediction error. A thorough comparison of pretest and shrinkage estimators based on the maximum likelihood method to the penalty methods. In this paper, we extend the comparison outlined in his work using the least squares method for the generalised ridge regression.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12351</identifier><language>eng</language><publisher>Hoboken: John Wiley &amp; Sons, Inc</publisher><subject>Computer simulation ; Data analysis ; Estimators ; Generalised ridge regression ; Least squares method ; low‐dimensional and high‐dimensional data ; Maximum likelihood method ; multicollinearity ; penalty estimation ; Regression analysis ; Regression models ; Regularization ; Shrinkage ; shrinkage estimation</subject><ispartof>International statistical review, 2020-04, Vol.88 (1), p.229-251</ispartof><rights>2020 The Authors. International Statistical Review © 2020 International Statistical Institute</rights><rights>2020 International Statistical Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-3654ab223a06bebd143e864c9bb56227a66729454af3ac1de30ff6c2cfe533493</citedby><cites>FETCH-LOGICAL-c3011-3654ab223a06bebd143e864c9bb56227a66729454af3ac1de30ff6c2cfe533493</cites><orcidid>0000-0002-6196-3201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Finsr.12351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Finsr.12351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yüzbaşı, Bahadır</creatorcontrib><creatorcontrib>Arashi, Mohammad</creatorcontrib><creatorcontrib>Ejaz Ahmed, S.</creatorcontrib><title>Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime</title><title>International statistical review</title><description>Summary In this study, we suggest pretest and shrinkage methods based on the generalised ridge regression estimation that is suitable for both multicollinear and high‐dimensional problems. We review and develop theoretical results for some of the shrinkage estimators. The relative performance of the shrinkage estimators to some penalty methods is compared and assessed by both simulation and real‐data analysis. We show that the suggested methods can be accounted as good competitors to regularisation techniques, by means of a mean squared error of estimation and prediction error. A thorough comparison of pretest and shrinkage estimators based on the maximum likelihood method to the penalty methods. In this paper, we extend the comparison outlined in his work using the least squares method for the generalised ridge regression.</description><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Estimators</subject><subject>Generalised ridge regression</subject><subject>Least squares method</subject><subject>low‐dimensional and high‐dimensional data</subject><subject>Maximum likelihood method</subject><subject>multicollinearity</subject><subject>penalty estimation</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regularization</subject><subject>Shrinkage</subject><subject>shrinkage estimation</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtOwzAQBmALgUQpbDhBJHZIaW1P4qTsUOlLKiC1sLacZJK6pEmxU1XdcQTOyElwG9Z4FrbkzzPyT8gtoz3mVl9X1vQYh5CdkQ6LQuaHMYdz0qFAhR9FEFySK2vXlFLgcdAh6XJldPWhCvRGttEb1ei68paNUQ0WGq2nK2-CFRpVaouZt9CZowssDFp7pM91hqV98Ob1vj_Vxern6_tJb7A6XTrnztfkIlelxZu_vUvex6O34dSfv05mw8e5nwJlzAcRBirhHBQVCSYZCwBjEaSDJAkF55ESIuKDwKEcVMoyBJrnIuVpjiFAMIAuuWv7bk39uUPbyHW9M5UbKTnEsQipK6fuW5Wa2lqDudwa929zkIzKY4jyGKI8hegwa_Fel3j4R8rZy3LRvvkF1H51sw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Yüzbaşı, Bahadır</creator><creator>Arashi, Mohammad</creator><creator>Ejaz Ahmed, S.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6196-3201</orcidid></search><sort><creationdate>202004</creationdate><title>Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime</title><author>Yüzbaşı, Bahadır ; Arashi, Mohammad ; Ejaz Ahmed, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-3654ab223a06bebd143e864c9bb56227a66729454af3ac1de30ff6c2cfe533493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Estimators</topic><topic>Generalised ridge regression</topic><topic>Least squares method</topic><topic>low‐dimensional and high‐dimensional data</topic><topic>Maximum likelihood method</topic><topic>multicollinearity</topic><topic>penalty estimation</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regularization</topic><topic>Shrinkage</topic><topic>shrinkage estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yüzbaşı, Bahadır</creatorcontrib><creatorcontrib>Arashi, Mohammad</creatorcontrib><creatorcontrib>Ejaz Ahmed, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yüzbaşı, Bahadır</au><au>Arashi, Mohammad</au><au>Ejaz Ahmed, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime</atitle><jtitle>International statistical review</jtitle><date>2020-04</date><risdate>2020</risdate><volume>88</volume><issue>1</issue><spage>229</spage><epage>251</epage><pages>229-251</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Summary In this study, we suggest pretest and shrinkage methods based on the generalised ridge regression estimation that is suitable for both multicollinear and high‐dimensional problems. We review and develop theoretical results for some of the shrinkage estimators. The relative performance of the shrinkage estimators to some penalty methods is compared and assessed by both simulation and real‐data analysis. We show that the suggested methods can be accounted as good competitors to regularisation techniques, by means of a mean squared error of estimation and prediction error. A thorough comparison of pretest and shrinkage estimators based on the maximum likelihood method to the penalty methods. In this paper, we extend the comparison outlined in his work using the least squares method for the generalised ridge regression.</abstract><cop>Hoboken</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/insr.12351</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6196-3201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2020-04, Vol.88 (1), p.229-251
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_journals_2388650505
source Wiley Journals
subjects Computer simulation
Data analysis
Estimators
Generalised ridge regression
Least squares method
low‐dimensional and high‐dimensional data
Maximum likelihood method
multicollinearity
penalty estimation
Regression analysis
Regression models
Regularization
Shrinkage
shrinkage estimation
title Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20Estimation%20Strategies%20in%20Generalised%20Ridge%20Regression%20Models:%20Low/High%E2%80%90Dimension%20Regime&rft.jtitle=International%20statistical%20review&rft.au=Y%C3%BCzba%C5%9F%C4%B1,%20Bahad%C4%B1r&rft.date=2020-04&rft.volume=88&rft.issue=1&rft.spage=229&rft.epage=251&rft.pages=229-251&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12351&rft_dat=%3Cproquest_cross%3E2388650505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388650505&rft_id=info:pmid/&rfr_iscdi=true