Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations
In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinge...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2020-03, Vol.36 (2), p.503-515 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 2 |
container_start_page | 503 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 36 |
creator | Li, Hao-chen Sun, Jian-qiang Ye, Hang He, Xue-jun |
description | In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations. |
doi_str_mv | 10.1007/s10255-020-0933-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388568094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388568094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqXwAGyWmA2_7dpxxqqUi1RgAMRoOY5NXaVJaydDX4wX4MVIFCQmpjOci3Q-hC4pXFOA7CZRYEIQYEAg55zMjtCESqoIzzk7RhOgUpFcZvwUnaW0AaAZl9kEfdyGtHMxhabG89pUhxQSbjx-6qo2kHTY7ipn22Dxq127rcO-ibhdO_zc1FWonYmDEb-_ylB_uoiX-860_VY6RyfeVMld_OoUvd8t3xYPZPVy_7iYr4hlUrVEqTKnXgkqMlt6p1hhhIVCeZNTVUhRZJL1OiutAM9AKi5pf8VBDgqM53yKrsbdXWz2nUut3jRd7I8kzbhSQirIZ32Kjikbm5Si83oXw9bEg6agB3565Kd7fnrgp4cOGzupzw7n_pb_L_0AYTVzYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388568094</pqid></control><display><type>article</type><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</creator><creatorcontrib>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</creatorcontrib><description>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-020-0933-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Dispersion ; Electrons ; Group velocity ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Schrodinger equation ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2020-03, Vol.36 (2), p.503-515</ispartof><rights>The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2020 2020</rights><rights>The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2020 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-020-0933-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-020-0933-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Hao-chen</creatorcontrib><creatorcontrib>Sun, Jian-qiang</creatorcontrib><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>He, Xue-jun</creatorcontrib><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</description><subject>Applications of Mathematics</subject><subject>Dispersion</subject><subject>Electrons</subject><subject>Group velocity</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqXwAGyWmA2_7dpxxqqUi1RgAMRoOY5NXaVJaydDX4wX4MVIFCQmpjOci3Q-hC4pXFOA7CZRYEIQYEAg55zMjtCESqoIzzk7RhOgUpFcZvwUnaW0AaAZl9kEfdyGtHMxhabG89pUhxQSbjx-6qo2kHTY7ipn22Dxq127rcO-ibhdO_zc1FWonYmDEb-_ylB_uoiX-860_VY6RyfeVMld_OoUvd8t3xYPZPVy_7iYr4hlUrVEqTKnXgkqMlt6p1hhhIVCeZNTVUhRZJL1OiutAM9AKi5pf8VBDgqM53yKrsbdXWz2nUut3jRd7I8kzbhSQirIZ32Kjikbm5Si83oXw9bEg6agB3565Kd7fnrgp4cOGzupzw7n_pb_L_0AYTVzYw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Li, Hao-chen</creator><creator>Sun, Jian-qiang</creator><creator>Ye, Hang</creator><creator>He, Xue-jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><author>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Dispersion</topic><topic>Electrons</topic><topic>Group velocity</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao-chen</creatorcontrib><creatorcontrib>Sun, Jian-qiang</creatorcontrib><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>He, Xue-jun</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hao-chen</au><au>Sun, Jian-qiang</au><au>Ye, Hang</au><au>He, Xue-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-020-0933-4</doi><tpages>13</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2020-03, Vol.36 (2), p.503-515 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_2388568094 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Dispersion Electrons Group velocity Math Applications in Computer Science Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear equations Schrodinger equation Theoretical |
title | Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20Analysis%20of%20Multi-symplectic%20Scheme%20for%20the%20Nonlinear%20Schr%C3%B6dinger%20Equations&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Li,%20Hao-chen&rft.date=2020-03-01&rft.volume=36&rft.issue=2&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-020-0933-4&rft_dat=%3Cproquest_cross%3E2388568094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388568094&rft_id=info:pmid/&rfr_iscdi=true |