Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations

In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2020-03, Vol.36 (2), p.503-515
Hauptverfasser: Li, Hao-chen, Sun, Jian-qiang, Ye, Hang, He, Xue-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 2
container_start_page 503
container_title Acta Mathematicae Applicatae Sinica
container_volume 36
creator Li, Hao-chen
Sun, Jian-qiang
Ye, Hang
He, Xue-jun
description In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.
doi_str_mv 10.1007/s10255-020-0933-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388568094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388568094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqXwAGyWmA2_7dpxxqqUi1RgAMRoOY5NXaVJaydDX4wX4MVIFCQmpjOci3Q-hC4pXFOA7CZRYEIQYEAg55zMjtCESqoIzzk7RhOgUpFcZvwUnaW0AaAZl9kEfdyGtHMxhabG89pUhxQSbjx-6qo2kHTY7ipn22Dxq127rcO-ibhdO_zc1FWonYmDEb-_ylB_uoiX-860_VY6RyfeVMld_OoUvd8t3xYPZPVy_7iYr4hlUrVEqTKnXgkqMlt6p1hhhIVCeZNTVUhRZJL1OiutAM9AKi5pf8VBDgqM53yKrsbdXWz2nUut3jRd7I8kzbhSQirIZ32Kjikbm5Si83oXw9bEg6agB3565Kd7fnrgp4cOGzupzw7n_pb_L_0AYTVzYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388568094</pqid></control><display><type>article</type><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</creator><creatorcontrib>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</creatorcontrib><description>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-020-0933-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Dispersion ; Electrons ; Group velocity ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Schrodinger equation ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2020-03, Vol.36 (2), p.503-515</ispartof><rights>The Editorial Office of AMAS &amp; Springer-Verlag GmbH Germany 2020 2020</rights><rights>The Editorial Office of AMAS &amp; Springer-Verlag GmbH Germany 2020 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-020-0933-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-020-0933-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Hao-chen</creatorcontrib><creatorcontrib>Sun, Jian-qiang</creatorcontrib><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>He, Xue-jun</creatorcontrib><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</description><subject>Applications of Mathematics</subject><subject>Dispersion</subject><subject>Electrons</subject><subject>Group velocity</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqXwAGyWmA2_7dpxxqqUi1RgAMRoOY5NXaVJaydDX4wX4MVIFCQmpjOci3Q-hC4pXFOA7CZRYEIQYEAg55zMjtCESqoIzzk7RhOgUpFcZvwUnaW0AaAZl9kEfdyGtHMxhabG89pUhxQSbjx-6qo2kHTY7ipn22Dxq127rcO-ibhdO_zc1FWonYmDEb-_ylB_uoiX-860_VY6RyfeVMld_OoUvd8t3xYPZPVy_7iYr4hlUrVEqTKnXgkqMlt6p1hhhIVCeZNTVUhRZJL1OiutAM9AKi5pf8VBDgqM53yKrsbdXWz2nUut3jRd7I8kzbhSQirIZ32Kjikbm5Si83oXw9bEg6agB3565Kd7fnrgp4cOGzupzw7n_pb_L_0AYTVzYw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Li, Hao-chen</creator><creator>Sun, Jian-qiang</creator><creator>Ye, Hang</creator><creator>He, Xue-jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</title><author>Li, Hao-chen ; Sun, Jian-qiang ; Ye, Hang ; He, Xue-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-88d91f85157cdfe82ba5c0b8fa918b65b7628b64dc50f2068361016e09080af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Dispersion</topic><topic>Electrons</topic><topic>Group velocity</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao-chen</creatorcontrib><creatorcontrib>Sun, Jian-qiang</creatorcontrib><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>He, Xue-jun</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hao-chen</au><au>Sun, Jian-qiang</au><au>Ye, Hang</au><au>He, Xue-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, we study the dispersive properties of multi-symplectic discretizations for the nonlinear Schrödinger equations. The numerical dispersion relation and group velocity are investigated. It is found that the numerical dispersion relation is relevant when resolving the nonlinear Schrödinger equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-020-0933-4</doi><tpages>13</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2020-03, Vol.36 (2), p.503-515
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2388568094
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Dispersion
Electrons
Group velocity
Math Applications in Computer Science
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Schrodinger equation
Theoretical
title Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20Analysis%20of%20Multi-symplectic%20Scheme%20for%20the%20Nonlinear%20Schr%C3%B6dinger%20Equations&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Li,%20Hao-chen&rft.date=2020-03-01&rft.volume=36&rft.issue=2&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-020-0933-4&rft_dat=%3Cproquest_cross%3E2388568094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388568094&rft_id=info:pmid/&rfr_iscdi=true