Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures
The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the loca...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2020-04, Vol.199 (1-2), p.171-181 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 1-2 |
container_start_page | 171 |
container_title | Journal of low temperature physics |
container_volume | 199 |
creator | López-López, O. Martínez, I. Cabrera, A. Gutiérrez-D, E. A. Ferrusca, D. Durini, D. De la Hidalga-Wade, F. J. Velazquez, M. Huerta, O. Kruth, A. Degenhardt, C. Artanov, A. van Waasen, S. |
description | The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K. |
doi_str_mv | 10.1007/s10909-020-02340-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388318538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388318538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYO44Lj6BzwFvChsa6Uz6aSPMsyuwqKwzJ5DOl0ZeplJxkpamF_hXzazLXjzUFQ9-N4reIy9E_BJAOjPWUAPfQMt1JFraLoXbCWUlo2WSr9kK4C2bdq2F6_Y65yfAKA3nVyx39uItD_zTYp5Pp7KlOLNRfxCys-3iyPfkYs5IPEp8u8upiMWmjy_nfAwNtsQ0JeFmXJJlPmH2-3uI3_MOF4cD-jGNBe-PVSOUpx85q7wDZ3THqviOzyekFyZCfMbdhXcIePbv_uaPdawzdfm_sfdt82X-8a3GkoThn5wXrjBraUZsO-kGlEBGhg6pUB13q-1C3pQAr0w69H0ndACdBewBx_kNXu_5J4o_ZwxF_uUZor1pW2lMVIYJU2l2oXylHImDPZE09HR2Qqwl-LtUrytxdvn4m1XTXIx5QrHPdK_6P-4_gBeNYfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388318538</pqid></control><display><type>article</type><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</creator><creatorcontrib>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</creatorcontrib><description>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-020-02340-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Charge transport ; Condensed Matter Physics ; Cryogenic temperature ; Current carriers ; Energy consumption ; Field effect transistors ; Heat ; Integrated circuits ; Low temperature physics ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy ; Semiconductor devices ; Signal processing ; Temperature dependence ; Thermodynamic properties ; Transistors ; Transport properties</subject><ispartof>Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.171-181</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</cites><orcidid>0000-0003-4050-9971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-020-02340-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-020-02340-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>López-López, O.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Cabrera, A.</creatorcontrib><creatorcontrib>Gutiérrez-D, E. A.</creatorcontrib><creatorcontrib>Ferrusca, D.</creatorcontrib><creatorcontrib>Durini, D.</creatorcontrib><creatorcontrib>De la Hidalga-Wade, F. J.</creatorcontrib><creatorcontrib>Velazquez, M.</creatorcontrib><creatorcontrib>Huerta, O.</creatorcontrib><creatorcontrib>Kruth, A.</creatorcontrib><creatorcontrib>Degenhardt, C.</creatorcontrib><creatorcontrib>Artanov, A.</creatorcontrib><creatorcontrib>van Waasen, S.</creatorcontrib><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</description><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Condensed Matter Physics</subject><subject>Cryogenic temperature</subject><subject>Current carriers</subject><subject>Energy consumption</subject><subject>Field effect transistors</subject><subject>Heat</subject><subject>Integrated circuits</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductor devices</subject><subject>Signal processing</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEGLFDEQhYO44Lj6BzwFvChsa6Uz6aSPMsyuwqKwzJ5DOl0ZeplJxkpamF_hXzazLXjzUFQ9-N4reIy9E_BJAOjPWUAPfQMt1JFraLoXbCWUlo2WSr9kK4C2bdq2F6_Y65yfAKA3nVyx39uItD_zTYp5Pp7KlOLNRfxCys-3iyPfkYs5IPEp8u8upiMWmjy_nfAwNtsQ0JeFmXJJlPmH2-3uI3_MOF4cD-jGNBe-PVSOUpx85q7wDZ3THqviOzyekFyZCfMbdhXcIePbv_uaPdawzdfm_sfdt82X-8a3GkoThn5wXrjBraUZsO-kGlEBGhg6pUB13q-1C3pQAr0w69H0ndACdBewBx_kNXu_5J4o_ZwxF_uUZor1pW2lMVIYJU2l2oXylHImDPZE09HR2Qqwl-LtUrytxdvn4m1XTXIx5QrHPdK_6P-4_gBeNYfM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>López-López, O.</creator><creator>Martínez, I.</creator><creator>Cabrera, A.</creator><creator>Gutiérrez-D, E. A.</creator><creator>Ferrusca, D.</creator><creator>Durini, D.</creator><creator>De la Hidalga-Wade, F. J.</creator><creator>Velazquez, M.</creator><creator>Huerta, O.</creator><creator>Kruth, A.</creator><creator>Degenhardt, C.</creator><creator>Artanov, A.</creator><creator>van Waasen, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4050-9971</orcidid></search><sort><creationdate>20200401</creationdate><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><author>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Condensed Matter Physics</topic><topic>Cryogenic temperature</topic><topic>Current carriers</topic><topic>Energy consumption</topic><topic>Field effect transistors</topic><topic>Heat</topic><topic>Integrated circuits</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductor devices</topic><topic>Signal processing</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-López, O.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Cabrera, A.</creatorcontrib><creatorcontrib>Gutiérrez-D, E. A.</creatorcontrib><creatorcontrib>Ferrusca, D.</creatorcontrib><creatorcontrib>Durini, D.</creatorcontrib><creatorcontrib>De la Hidalga-Wade, F. J.</creatorcontrib><creatorcontrib>Velazquez, M.</creatorcontrib><creatorcontrib>Huerta, O.</creatorcontrib><creatorcontrib>Kruth, A.</creatorcontrib><creatorcontrib>Degenhardt, C.</creatorcontrib><creatorcontrib>Artanov, A.</creatorcontrib><creatorcontrib>van Waasen, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-López, O.</au><au>Martínez, I.</au><au>Cabrera, A.</au><au>Gutiérrez-D, E. A.</au><au>Ferrusca, D.</au><au>Durini, D.</au><au>De la Hidalga-Wade, F. J.</au><au>Velazquez, M.</au><au>Huerta, O.</au><au>Kruth, A.</au><au>Degenhardt, C.</au><au>Artanov, A.</au><au>van Waasen, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>199</volume><issue>1-2</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-020-02340-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4050-9971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.171-181 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2388318538 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Charge transport Condensed Matter Physics Cryogenic temperature Current carriers Energy consumption Field effect transistors Heat Integrated circuits Low temperature physics Magnetic Materials Magnetism Physics Physics and Astronomy Semiconductor devices Signal processing Temperature dependence Thermodynamic properties Transistors Transport properties |
title | Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Consumption,%20Conversion,%20and%20Transfer%20in%20Nanometric%20Field-Effect%20Transistors%20(FET)%20Used%20in%20Readout%20Electronics%20at%20Cryogenic%20Temperatures&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=L%C3%B3pez-L%C3%B3pez,%20O.&rft.date=2020-04-01&rft.volume=199&rft.issue=1-2&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-020-02340-6&rft_dat=%3Cproquest_cross%3E2388318538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388318538&rft_id=info:pmid/&rfr_iscdi=true |