Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures

The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2020-04, Vol.199 (1-2), p.171-181
Hauptverfasser: López-López, O., Martínez, I., Cabrera, A., Gutiérrez-D, E. A., Ferrusca, D., Durini, D., De la Hidalga-Wade, F. J., Velazquez, M., Huerta, O., Kruth, A., Degenhardt, C., Artanov, A., van Waasen, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 1-2
container_start_page 171
container_title Journal of low temperature physics
container_volume 199
creator López-López, O.
Martínez, I.
Cabrera, A.
Gutiérrez-D, E. A.
Ferrusca, D.
Durini, D.
De la Hidalga-Wade, F. J.
Velazquez, M.
Huerta, O.
Kruth, A.
Degenhardt, C.
Artanov, A.
van Waasen, S.
description The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.
doi_str_mv 10.1007/s10909-020-02340-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388318538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388318538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYO44Lj6BzwFvChsa6Uz6aSPMsyuwqKwzJ5DOl0ZeplJxkpamF_hXzazLXjzUFQ9-N4reIy9E_BJAOjPWUAPfQMt1JFraLoXbCWUlo2WSr9kK4C2bdq2F6_Y65yfAKA3nVyx39uItD_zTYp5Pp7KlOLNRfxCys-3iyPfkYs5IPEp8u8upiMWmjy_nfAwNtsQ0JeFmXJJlPmH2-3uI3_MOF4cD-jGNBe-PVSOUpx85q7wDZ3THqviOzyekFyZCfMbdhXcIePbv_uaPdawzdfm_sfdt82X-8a3GkoThn5wXrjBraUZsO-kGlEBGhg6pUB13q-1C3pQAr0w69H0ndACdBewBx_kNXu_5J4o_ZwxF_uUZor1pW2lMVIYJU2l2oXylHImDPZE09HR2Qqwl-LtUrytxdvn4m1XTXIx5QrHPdK_6P-4_gBeNYfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388318538</pqid></control><display><type>article</type><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</creator><creatorcontrib>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</creatorcontrib><description>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-020-02340-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Charge transport ; Condensed Matter Physics ; Cryogenic temperature ; Current carriers ; Energy consumption ; Field effect transistors ; Heat ; Integrated circuits ; Low temperature physics ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy ; Semiconductor devices ; Signal processing ; Temperature dependence ; Thermodynamic properties ; Transistors ; Transport properties</subject><ispartof>Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.171-181</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</cites><orcidid>0000-0003-4050-9971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-020-02340-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-020-02340-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>López-López, O.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Cabrera, A.</creatorcontrib><creatorcontrib>Gutiérrez-D, E. A.</creatorcontrib><creatorcontrib>Ferrusca, D.</creatorcontrib><creatorcontrib>Durini, D.</creatorcontrib><creatorcontrib>De la Hidalga-Wade, F. J.</creatorcontrib><creatorcontrib>Velazquez, M.</creatorcontrib><creatorcontrib>Huerta, O.</creatorcontrib><creatorcontrib>Kruth, A.</creatorcontrib><creatorcontrib>Degenhardt, C.</creatorcontrib><creatorcontrib>Artanov, A.</creatorcontrib><creatorcontrib>van Waasen, S.</creatorcontrib><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</description><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Condensed Matter Physics</subject><subject>Cryogenic temperature</subject><subject>Current carriers</subject><subject>Energy consumption</subject><subject>Field effect transistors</subject><subject>Heat</subject><subject>Integrated circuits</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductor devices</subject><subject>Signal processing</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEGLFDEQhYO44Lj6BzwFvChsa6Uz6aSPMsyuwqKwzJ5DOl0ZeplJxkpamF_hXzazLXjzUFQ9-N4reIy9E_BJAOjPWUAPfQMt1JFraLoXbCWUlo2WSr9kK4C2bdq2F6_Y65yfAKA3nVyx39uItD_zTYp5Pp7KlOLNRfxCys-3iyPfkYs5IPEp8u8upiMWmjy_nfAwNtsQ0JeFmXJJlPmH2-3uI3_MOF4cD-jGNBe-PVSOUpx85q7wDZ3THqviOzyekFyZCfMbdhXcIePbv_uaPdawzdfm_sfdt82X-8a3GkoThn5wXrjBraUZsO-kGlEBGhg6pUB13q-1C3pQAr0w69H0ndACdBewBx_kNXu_5J4o_ZwxF_uUZor1pW2lMVIYJU2l2oXylHImDPZE09HR2Qqwl-LtUrytxdvn4m1XTXIx5QrHPdK_6P-4_gBeNYfM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>López-López, O.</creator><creator>Martínez, I.</creator><creator>Cabrera, A.</creator><creator>Gutiérrez-D, E. A.</creator><creator>Ferrusca, D.</creator><creator>Durini, D.</creator><creator>De la Hidalga-Wade, F. J.</creator><creator>Velazquez, M.</creator><creator>Huerta, O.</creator><creator>Kruth, A.</creator><creator>Degenhardt, C.</creator><creator>Artanov, A.</creator><creator>van Waasen, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4050-9971</orcidid></search><sort><creationdate>20200401</creationdate><title>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</title><author>López-López, O. ; Martínez, I. ; Cabrera, A. ; Gutiérrez-D, E. A. ; Ferrusca, D. ; Durini, D. ; De la Hidalga-Wade, F. J. ; Velazquez, M. ; Huerta, O. ; Kruth, A. ; Degenhardt, C. ; Artanov, A. ; van Waasen, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fb9bac1aba438be9635de50e80b655056cc47af7b51ec184d896171076fe90cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Condensed Matter Physics</topic><topic>Cryogenic temperature</topic><topic>Current carriers</topic><topic>Energy consumption</topic><topic>Field effect transistors</topic><topic>Heat</topic><topic>Integrated circuits</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductor devices</topic><topic>Signal processing</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-López, O.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Cabrera, A.</creatorcontrib><creatorcontrib>Gutiérrez-D, E. A.</creatorcontrib><creatorcontrib>Ferrusca, D.</creatorcontrib><creatorcontrib>Durini, D.</creatorcontrib><creatorcontrib>De la Hidalga-Wade, F. J.</creatorcontrib><creatorcontrib>Velazquez, M.</creatorcontrib><creatorcontrib>Huerta, O.</creatorcontrib><creatorcontrib>Kruth, A.</creatorcontrib><creatorcontrib>Degenhardt, C.</creatorcontrib><creatorcontrib>Artanov, A.</creatorcontrib><creatorcontrib>van Waasen, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-López, O.</au><au>Martínez, I.</au><au>Cabrera, A.</au><au>Gutiérrez-D, E. A.</au><au>Ferrusca, D.</au><au>Durini, D.</au><au>De la Hidalga-Wade, F. J.</au><au>Velazquez, M.</au><au>Huerta, O.</au><au>Kruth, A.</au><au>Degenhardt, C.</au><au>Artanov, A.</au><au>van Waasen, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>199</volume><issue>1-2</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-020-02340-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4050-9971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.171-181
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2388318538
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Charge transport
Condensed Matter Physics
Cryogenic temperature
Current carriers
Energy consumption
Field effect transistors
Heat
Integrated circuits
Low temperature physics
Magnetic Materials
Magnetism
Physics
Physics and Astronomy
Semiconductor devices
Signal processing
Temperature dependence
Thermodynamic properties
Transistors
Transport properties
title Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Consumption,%20Conversion,%20and%20Transfer%20in%20Nanometric%20Field-Effect%20Transistors%20(FET)%20Used%20in%20Readout%20Electronics%20at%20Cryogenic%20Temperatures&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=L%C3%B3pez-L%C3%B3pez,%20O.&rft.date=2020-04-01&rft.volume=199&rft.issue=1-2&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-020-02340-6&rft_dat=%3Cproquest_cross%3E2388318538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388318538&rft_id=info:pmid/&rfr_iscdi=true