A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements

This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-08, Vol.67 (8), p.6806-6814
Hauptverfasser: Xiao, Hui, Bar-Shalom, Yaakov, Chen, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6814
container_issue 8
container_start_page 6806
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Xiao, Hui
Bar-Shalom, Yaakov
Chen, Xu
description This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.
doi_str_mv 10.1109/TIE.2019.2934057
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2388104228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826600</ieee_id><sourcerecordid>2388104228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</originalsourceid><addsrcrecordid>eNqNkMFq3DAQQEVJoZu090IughyDtyOtJEvH1M22gYRCs3czlkfBwWttJG9C_r5aNjTXnmYO783AY-yrgKUQ4L5tbq6XEoRbSrdSoOsPbCG0rivnlD1hC5C1rQCU-cROc34EEEoLvWDhijdxHLGLCefhmfg9TXmYHjhOPb-LPY3Vd8zU8z-EY7UZtlQ2H58pvfIY-BrzzH_gjHw9xpfM1ylu-f0OUyZ-R5j3ibY0zfkz-xhwzPTlbZ6xzfp60_yqbn__vGmubisvlZorJX1NtRdaSEITvOs0KhOM0oCiNxaF6TotfOi1NS70pqsBle37WnroYHXGLo5ndyk-7SnP7WPcp6l8bOXKWgFKSlsoOFI-xZwThXaXhi2m11ZAe4jZlpjtIWb7FrMo9qi8UBdD9gNNnv5pAKCl1caZw-aaYS4t49TE_TQX9fL_1UKfH-mB6J2yVpoCrP4Cv_6QjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388104228</pqid></control><display><type>article</type><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</creator><creatorcontrib>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</creatorcontrib><description>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2934057</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Automation &amp; Control Systems ; Autoregressive processes ; Beam steering ; Collaboration ; Data collection ; Data models ; Data recovery ; Disturbance beyond Nyquist frequency ; Engineering ; Engineering, Electrical &amp; Electronic ; information recovery ; Instruments &amp; Instrumentation ; multirate signal processing ; Nyquist frequencies ; Real time ; Real-time systems ; Rejection ; Robustness (mathematics) ; Science &amp; Technology ; Sensors ; Signal processing ; Signal processing algorithms ; Technology ; Time measurement ; Velocity measurement</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-08, Vol.67 (8), p.6806-6814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528569600059</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</cites><orcidid>0000-0003-1317-3368 ; 0000-0001-8341-5268 ; 0000-0002-4604-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><addtitle>IEEE T IND ELECTRON</addtitle><description>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</description><subject>Algorithms</subject><subject>Automation &amp; Control Systems</subject><subject>Autoregressive processes</subject><subject>Beam steering</subject><subject>Collaboration</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data recovery</subject><subject>Disturbance beyond Nyquist frequency</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>information recovery</subject><subject>Instruments &amp; Instrumentation</subject><subject>multirate signal processing</subject><subject>Nyquist frequencies</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Rejection</subject><subject>Robustness (mathematics)</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Technology</subject><subject>Time measurement</subject><subject>Velocity measurement</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMFq3DAQQEVJoZu090IughyDtyOtJEvH1M22gYRCs3czlkfBwWttJG9C_r5aNjTXnmYO783AY-yrgKUQ4L5tbq6XEoRbSrdSoOsPbCG0rivnlD1hC5C1rQCU-cROc34EEEoLvWDhijdxHLGLCefhmfg9TXmYHjhOPb-LPY3Vd8zU8z-EY7UZtlQ2H58pvfIY-BrzzH_gjHw9xpfM1ylu-f0OUyZ-R5j3ibY0zfkz-xhwzPTlbZ6xzfp60_yqbn__vGmubisvlZorJX1NtRdaSEITvOs0KhOM0oCiNxaF6TotfOi1NS70pqsBle37WnroYHXGLo5ndyk-7SnP7WPcp6l8bOXKWgFKSlsoOFI-xZwThXaXhi2m11ZAe4jZlpjtIWb7FrMo9qi8UBdD9gNNnv5pAKCl1caZw-aaYS4t49TE_TQX9fL_1UKfH-mB6J2yVpoCrP4Cv_6QjQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xiao, Hui</creator><creator>Bar-Shalom, Yaakov</creator><creator>Chen, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0001-8341-5268</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></search><sort><creationdate>20200801</creationdate><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><author>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation &amp; Control Systems</topic><topic>Autoregressive processes</topic><topic>Beam steering</topic><topic>Collaboration</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data recovery</topic><topic>Disturbance beyond Nyquist frequency</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>information recovery</topic><topic>Instruments &amp; Instrumentation</topic><topic>multirate signal processing</topic><topic>Nyquist frequencies</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Rejection</topic><topic>Robustness (mathematics)</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Technology</topic><topic>Time measurement</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Hui</au><au>Bar-Shalom, Yaakov</au><au>Chen, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><stitle>IEEE T IND ELECTRON</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>67</volume><issue>8</issue><spage>6806</spage><epage>6814</epage><pages>6806-6814</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2934057</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0001-8341-5268</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-08, Vol.67 (8), p.6806-6814
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2388104228
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation & Control Systems
Autoregressive processes
Beam steering
Collaboration
Data collection
Data models
Data recovery
Disturbance beyond Nyquist frequency
Engineering
Engineering, Electrical & Electronic
information recovery
Instruments & Instrumentation
multirate signal processing
Nyquist frequencies
Real time
Real-time systems
Rejection
Robustness (mathematics)
Science & Technology
Sensors
Signal processing
Signal processing algorithms
Technology
Time measurement
Velocity measurement
title A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Collaborative%20Sensing%20and%20Model-Based%20Real-Time%20Recovery%20of%20Fast%20Data%20Flows%20From%20Sparse%20Measurements&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiao,%20Hui&rft.date=2020-08-01&rft.volume=67&rft.issue=8&rft.spage=6806&rft.epage=6814&rft.pages=6806-6814&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2934057&rft_dat=%3Cproquest_RIE%3E2388104228%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388104228&rft_id=info:pmid/&rft_ieee_id=8826600&rfr_iscdi=true