A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements
This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-08, Vol.67 (8), p.6806-6814 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6814 |
---|---|
container_issue | 8 |
container_start_page | 6806 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Xiao, Hui Bar-Shalom, Yaakov Chen, Xu |
description | This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors. |
doi_str_mv | 10.1109/TIE.2019.2934057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2388104228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826600</ieee_id><sourcerecordid>2388104228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</originalsourceid><addsrcrecordid>eNqNkMFq3DAQQEVJoZu090IughyDtyOtJEvH1M22gYRCs3czlkfBwWttJG9C_r5aNjTXnmYO783AY-yrgKUQ4L5tbq6XEoRbSrdSoOsPbCG0rivnlD1hC5C1rQCU-cROc34EEEoLvWDhijdxHLGLCefhmfg9TXmYHjhOPb-LPY3Vd8zU8z-EY7UZtlQ2H58pvfIY-BrzzH_gjHw9xpfM1ylu-f0OUyZ-R5j3ibY0zfkz-xhwzPTlbZ6xzfp60_yqbn__vGmubisvlZorJX1NtRdaSEITvOs0KhOM0oCiNxaF6TotfOi1NS70pqsBle37WnroYHXGLo5ndyk-7SnP7WPcp6l8bOXKWgFKSlsoOFI-xZwThXaXhi2m11ZAe4jZlpjtIWb7FrMo9qi8UBdD9gNNnv5pAKCl1caZw-aaYS4t49TE_TQX9fL_1UKfH-mB6J2yVpoCrP4Cv_6QjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388104228</pqid></control><display><type>article</type><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</creator><creatorcontrib>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</creatorcontrib><description>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2934057</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Automation & Control Systems ; Autoregressive processes ; Beam steering ; Collaboration ; Data collection ; Data models ; Data recovery ; Disturbance beyond Nyquist frequency ; Engineering ; Engineering, Electrical & Electronic ; information recovery ; Instruments & Instrumentation ; multirate signal processing ; Nyquist frequencies ; Real time ; Real-time systems ; Rejection ; Robustness (mathematics) ; Science & Technology ; Sensors ; Signal processing ; Signal processing algorithms ; Technology ; Time measurement ; Velocity measurement</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-08, Vol.67 (8), p.6806-6814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528569600059</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</cites><orcidid>0000-0003-1317-3368 ; 0000-0001-8341-5268 ; 0000-0002-4604-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><addtitle>IEEE T IND ELECTRON</addtitle><description>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</description><subject>Algorithms</subject><subject>Automation & Control Systems</subject><subject>Autoregressive processes</subject><subject>Beam steering</subject><subject>Collaboration</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data recovery</subject><subject>Disturbance beyond Nyquist frequency</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>information recovery</subject><subject>Instruments & Instrumentation</subject><subject>multirate signal processing</subject><subject>Nyquist frequencies</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Rejection</subject><subject>Robustness (mathematics)</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Technology</subject><subject>Time measurement</subject><subject>Velocity measurement</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMFq3DAQQEVJoZu090IughyDtyOtJEvH1M22gYRCs3czlkfBwWttJG9C_r5aNjTXnmYO783AY-yrgKUQ4L5tbq6XEoRbSrdSoOsPbCG0rivnlD1hC5C1rQCU-cROc34EEEoLvWDhijdxHLGLCefhmfg9TXmYHjhOPb-LPY3Vd8zU8z-EY7UZtlQ2H58pvfIY-BrzzH_gjHw9xpfM1ylu-f0OUyZ-R5j3ibY0zfkz-xhwzPTlbZ6xzfp60_yqbn__vGmubisvlZorJX1NtRdaSEITvOs0KhOM0oCiNxaF6TotfOi1NS70pqsBle37WnroYHXGLo5ndyk-7SnP7WPcp6l8bOXKWgFKSlsoOFI-xZwThXaXhi2m11ZAe4jZlpjtIWb7FrMo9qi8UBdD9gNNnv5pAKCl1caZw-aaYS4t49TE_TQX9fL_1UKfH-mB6J2yVpoCrP4Cv_6QjQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xiao, Hui</creator><creator>Bar-Shalom, Yaakov</creator><creator>Chen, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0001-8341-5268</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></search><sort><creationdate>20200801</creationdate><title>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</title><author>Xiao, Hui ; Bar-Shalom, Yaakov ; Chen, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-42c7e7c1512ea6fc9b5a46f6450a1d68a16bb51cfd5869fd6b70a48dd72c0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation & Control Systems</topic><topic>Autoregressive processes</topic><topic>Beam steering</topic><topic>Collaboration</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data recovery</topic><topic>Disturbance beyond Nyquist frequency</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>information recovery</topic><topic>Instruments & Instrumentation</topic><topic>multirate signal processing</topic><topic>Nyquist frequencies</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Rejection</topic><topic>Robustness (mathematics)</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Technology</topic><topic>Time measurement</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Hui</au><au>Bar-Shalom, Yaakov</au><au>Chen, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><stitle>IEEE T IND ELECTRON</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>67</volume><issue>8</issue><spage>6806</spage><epage>6814</epage><pages>6806-6814</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article considers the real-time recovery of a fast time series by using sparsely sampled measurements from sensors whose sampling speeds are prohibitively slow originally. Specifically, when the fast signal is an autoregressive process, we propose an online information recovery algorithm that reconstructs the dense underlying temporal dynamics fully by systematically modulating two slow sensors, and by exploiting a model-based fusion of the sparsely collected data. We provide the design of collaborative sensing and model-based information recovery algorithm, impacts of parameter choosing and model singularity, and methods to reduce computational complexity and increase prediction robustness. The proposed method is experimentally verified in an optical beam steering platform for additive manufacturing. Application to a closed-loop disturbance rejection problem reveals the feasibility to eliminate fast disturbance signals with the slow and not fully aligned sensor pair in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than that of the Nyquist frequencies of the sensors.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2934057</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0001-8341-5268</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-08, Vol.67 (8), p.6806-6814 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2388104228 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automation & Control Systems Autoregressive processes Beam steering Collaboration Data collection Data models Data recovery Disturbance beyond Nyquist frequency Engineering Engineering, Electrical & Electronic information recovery Instruments & Instrumentation multirate signal processing Nyquist frequencies Real time Real-time systems Rejection Robustness (mathematics) Science & Technology Sensors Signal processing Signal processing algorithms Technology Time measurement Velocity measurement |
title | A Collaborative Sensing and Model-Based Real-Time Recovery of Fast Data Flows From Sparse Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Collaborative%20Sensing%20and%20Model-Based%20Real-Time%20Recovery%20of%20Fast%20Data%20Flows%20From%20Sparse%20Measurements&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiao,%20Hui&rft.date=2020-08-01&rft.volume=67&rft.issue=8&rft.spage=6806&rft.epage=6814&rft.pages=6806-6814&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2934057&rft_dat=%3Cproquest_RIE%3E2388104228%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388104228&rft_id=info:pmid/&rft_ieee_id=8826600&rfr_iscdi=true |