On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials

The present work continues the investigation first started by Lobos et al. (J. Elast. 128(1):17–60, 2017 ) concerning the orientation average of tensorial quantities connected to single-crystal physical quantities distributed in polycrystals. In Lobos et al. (J. Elast. 128(1):17–60, 2017 ), central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2020-05, Vol.139 (2), p.331-357
1. Verfasser: Fernández, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 2
container_start_page 331
container_title Journal of elasticity
container_volume 139
creator Fernández, Mauricio
description The present work continues the investigation first started by Lobos et al. (J. Elast. 128(1):17–60, 2017 ) concerning the orientation average of tensorial quantities connected to single-crystal physical quantities distributed in polycrystals. In Lobos et al. (J. Elast. 128(1):17–60, 2017 ), central orientation density functions were considered in the orientation average for fourth-order tensors with certain index symmetries belonging to single-crystal quantities. The present work generalizes the results of Lobos et al. (J. Elast. 128(1):17–60, 2017 ) for the orientation average of tensors of arbitrary order by presenting a clear connection to the Fourier expansion of central orientation density functions and of the general orientation density function in terms of tensorial texture coefficients. The closed form of the orientation average based on a central orientation density function is represented in terms of the Fourier coefficients (referred to as texture eigenvalues) and the central orientation of the central orientation density function. The given representation requires the computation of specific isotropic tensors. A pragmatic algorithm for the automated generation of a basis of isotropic tensors is given. Applications and examples are presented to show that the representation of the orientation average offers a low-dimensional parametrization with major benefits for optimization problems in materials science. A simple implementation in Python 3 for the reproduction of all examples is offered through the GitHub repository https://github.com/mauricio-fernandez-l/centralODF-average .
doi_str_mv 10.1007/s10659-019-09754-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388033168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388033168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-bf7117b86f74fcd2ba1d881f04f0e7f86788ebfdf76a26313180bd2c806dd8dd3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8Bz9HJZjdJj7VaFSr1oOeQ3SR1y5qtSSrstzd1BfHiYXgw894b-CF0QeGKAojrSIFXUwI0z1RUJZEHaEIrwUjBJT1EE2CiJKxi1TE6iXEDAFNZwgStVx6nN4tXobU-6dT2Hs8-bdBri290tAbnxTyfgu7-mG6tj20a8GLnm_0iYtcH_Nx3QxOGmHTXtd7iJ51saHUXz9CRy2LPf_QUvS7uXuYPZLm6f5zPlqRhIBKpnaBU1JI7UbrGFLWmRkrqoHRghZNcSGlrZ5zguuCMMiqhNkUjgRsjjWGn6HLs3Yb-Y2djUpt-F3x-qQomJTBGucyuYnQ1oY8xWKe2oX3XYVAU1B6oGoGqDFR9A1X7EBtDMZv92obf6n9SXzrXeoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388033168</pqid></control><display><type>article</type><title>On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Fernández, Mauricio</creator><creatorcontrib>Fernández, Mauricio</creatorcontrib><description>The present work continues the investigation first started by Lobos et al. (J. Elast. 128(1):17–60, 2017 ) concerning the orientation average of tensorial quantities connected to single-crystal physical quantities distributed in polycrystals. In Lobos et al. (J. Elast. 128(1):17–60, 2017 ), central orientation density functions were considered in the orientation average for fourth-order tensors with certain index symmetries belonging to single-crystal quantities. The present work generalizes the results of Lobos et al. (J. Elast. 128(1):17–60, 2017 ) for the orientation average of tensors of arbitrary order by presenting a clear connection to the Fourier expansion of central orientation density functions and of the general orientation density function in terms of tensorial texture coefficients. The closed form of the orientation average based on a central orientation density function is represented in terms of the Fourier coefficients (referred to as texture eigenvalues) and the central orientation of the central orientation density function. The given representation requires the computation of specific isotropic tensors. A pragmatic algorithm for the automated generation of a basis of isotropic tensors is given. Applications and examples are presented to show that the representation of the orientation average offers a low-dimensional parametrization with major benefits for optimization problems in materials science. A simple implementation in Python 3 for the reproduction of all examples is offered through the GitHub repository https://github.com/mauricio-fernandez-l/centralODF-average .</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-019-09754-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Crystal structure ; Density ; Eigenvalues ; Materials science ; Mathematical analysis ; Optimization ; Orientation ; Parameterization ; Physics ; Physics and Astronomy ; Polycrystals ; Representations ; Single crystals ; Tensors ; Texture</subject><ispartof>Journal of elasticity, 2020-05, Vol.139 (2), p.331-357</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-bf7117b86f74fcd2ba1d881f04f0e7f86788ebfdf76a26313180bd2c806dd8dd3</cites><orcidid>0000-0003-1840-1243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-019-09754-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-019-09754-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Fernández, Mauricio</creatorcontrib><title>On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>The present work continues the investigation first started by Lobos et al. (J. Elast. 128(1):17–60, 2017 ) concerning the orientation average of tensorial quantities connected to single-crystal physical quantities distributed in polycrystals. In Lobos et al. (J. Elast. 128(1):17–60, 2017 ), central orientation density functions were considered in the orientation average for fourth-order tensors with certain index symmetries belonging to single-crystal quantities. The present work generalizes the results of Lobos et al. (J. Elast. 128(1):17–60, 2017 ) for the orientation average of tensors of arbitrary order by presenting a clear connection to the Fourier expansion of central orientation density functions and of the general orientation density function in terms of tensorial texture coefficients. The closed form of the orientation average based on a central orientation density function is represented in terms of the Fourier coefficients (referred to as texture eigenvalues) and the central orientation of the central orientation density function. The given representation requires the computation of specific isotropic tensors. A pragmatic algorithm for the automated generation of a basis of isotropic tensors is given. Applications and examples are presented to show that the representation of the orientation average offers a low-dimensional parametrization with major benefits for optimization problems in materials science. A simple implementation in Python 3 for the reproduction of all examples is offered through the GitHub repository https://github.com/mauricio-fernandez-l/centralODF-average .</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Density</subject><subject>Eigenvalues</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Orientation</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Representations</subject><subject>Single crystals</subject><subject>Tensors</subject><subject>Texture</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8Bz9HJZjdJj7VaFSr1oOeQ3SR1y5qtSSrstzd1BfHiYXgw894b-CF0QeGKAojrSIFXUwI0z1RUJZEHaEIrwUjBJT1EE2CiJKxi1TE6iXEDAFNZwgStVx6nN4tXobU-6dT2Hs8-bdBri290tAbnxTyfgu7-mG6tj20a8GLnm_0iYtcH_Nx3QxOGmHTXtd7iJ51saHUXz9CRy2LPf_QUvS7uXuYPZLm6f5zPlqRhIBKpnaBU1JI7UbrGFLWmRkrqoHRghZNcSGlrZ5zguuCMMiqhNkUjgRsjjWGn6HLs3Yb-Y2djUpt-F3x-qQomJTBGucyuYnQ1oY8xWKe2oX3XYVAU1B6oGoGqDFR9A1X7EBtDMZv92obf6n9SXzrXeoU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Fernández, Mauricio</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1840-1243</orcidid></search><sort><creationdate>20200501</creationdate><title>On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials</title><author>Fernández, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-bf7117b86f74fcd2ba1d881f04f0e7f86788ebfdf76a26313180bd2c806dd8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Density</topic><topic>Eigenvalues</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Orientation</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Representations</topic><topic>Single crystals</topic><topic>Tensors</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Mauricio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>139</volume><issue>2</issue><spage>331</spage><epage>357</epage><pages>331-357</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>The present work continues the investigation first started by Lobos et al. (J. Elast. 128(1):17–60, 2017 ) concerning the orientation average of tensorial quantities connected to single-crystal physical quantities distributed in polycrystals. In Lobos et al. (J. Elast. 128(1):17–60, 2017 ), central orientation density functions were considered in the orientation average for fourth-order tensors with certain index symmetries belonging to single-crystal quantities. The present work generalizes the results of Lobos et al. (J. Elast. 128(1):17–60, 2017 ) for the orientation average of tensors of arbitrary order by presenting a clear connection to the Fourier expansion of central orientation density functions and of the general orientation density function in terms of tensorial texture coefficients. The closed form of the orientation average based on a central orientation density function is represented in terms of the Fourier coefficients (referred to as texture eigenvalues) and the central orientation of the central orientation density function. The given representation requires the computation of specific isotropic tensors. A pragmatic algorithm for the automated generation of a basis of isotropic tensors is given. Applications and examples are presented to show that the representation of the orientation average offers a low-dimensional parametrization with major benefits for optimization problems in materials science. A simple implementation in Python 3 for the reproduction of all examples is offered through the GitHub repository https://github.com/mauricio-fernandez-l/centralODF-average .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-019-09754-8</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1840-1243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2020-05, Vol.139 (2), p.331-357
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_journals_2388033168
source Springer Nature - Complete Springer Journals
subjects Algorithms
Automotive Engineering
Classical Mechanics
Crystal structure
Density
Eigenvalues
Materials science
Mathematical analysis
Optimization
Orientation
Parameterization
Physics
Physics and Astronomy
Polycrystals
Representations
Single crystals
Tensors
Texture
title On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Orientation%20Average%20Based%20on%20Central%20Orientation%20Density%20Functions%20for%20Polycrystalline%20Materials&rft.jtitle=Journal%20of%20elasticity&rft.au=Fern%C3%A1ndez,%20Mauricio&rft.date=2020-05-01&rft.volume=139&rft.issue=2&rft.spage=331&rft.epage=357&rft.pages=331-357&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-019-09754-8&rft_dat=%3Cproquest_cross%3E2388033168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388033168&rft_id=info:pmid/&rfr_iscdi=true