Cryptographic Hash Functions from Expander Graphs
We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constr...
Gespeichert in:
Veröffentlicht in: | Journal of cryptology 2009-01, Vol.22 (1), p.93-113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Journal of cryptology |
container_volume | 22 |
creator | Charles, Denis X. Lauter, Kristin E. Goren, Eyal Z. |
description | We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over
with
ℓ
-isogenies,
ℓ
a prime different from
p
), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings. |
doi_str_mv | 10.1007/s00145-007-9002-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387712608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387712608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeC-Bi9N2ma9lHG_ggDX_Q5pFmydWxtTTrovr0pHfrk071wf-fcwyHkEeEFAeRrAMBU0LjSAoDR_opMMOWMIpf5NZlAwTllsoBbchfCPtJSSD4hOPPntmu2Xre7yiQrHXbJ4lSbrmrqkDjfHJN53-p6Y32yHKBwT26cPgT7cJlT8rWYf85WdP2xfJ-9ralJheioRUyZMXleIje8NAyc3gBHiWWZOsuzzBQiA1vkTqDQpeMgNcfUspg43Wg-JU-jb-ub75MNndo3J1_Hl4rxXEpkGeSRwpEyvgnBW6daXx21PysENTSjxmbUsA7NqD5qni_OOhh9cF7Xpgq_QobAWIYYOTZyIZ7qrfV_Cf43_wGcdXH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387712608</pqid></control><display><type>article</type><title>Cryptographic Hash Functions from Expander Graphs</title><source>Springer Online Journals Complete</source><creator>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</creator><creatorcontrib>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</creatorcontrib><description>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over
with
ℓ
-isogenies,
ℓ
a prime different from
p
), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-007-9002-x</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Applied sciences ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational Mathematics and Numerical Analysis ; Computer Science ; Cryptography ; Curves ; Exact sciences and technology ; Graphical representations ; Graphs ; Group theory ; Information, signal and communications theory ; Networks ; Probability Theory and Stochastic Processes ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Journal of cryptology, 2009-01, Vol.22 (1), p.93-113</ispartof><rights>International Association for Cryptologic Research 2007</rights><rights>2009 INIST-CNRS</rights><rights>International Association for Cryptologic Research 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</citedby><cites>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00145-007-9002-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00145-007-9002-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21022611$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, Denis X.</creatorcontrib><creatorcontrib>Lauter, Kristin E.</creatorcontrib><creatorcontrib>Goren, Eyal Z.</creatorcontrib><title>Cryptographic Hash Functions from Expander Graphs</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over
with
ℓ
-isogenies,
ℓ
a prime different from
p
), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</description><subject>Applied sciences</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Curves</subject><subject>Exact sciences and technology</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeC-Bi9N2ma9lHG_ggDX_Q5pFmydWxtTTrovr0pHfrk071wf-fcwyHkEeEFAeRrAMBU0LjSAoDR_opMMOWMIpf5NZlAwTllsoBbchfCPtJSSD4hOPPntmu2Xre7yiQrHXbJ4lSbrmrqkDjfHJN53-p6Y32yHKBwT26cPgT7cJlT8rWYf85WdP2xfJ-9ralJheioRUyZMXleIje8NAyc3gBHiWWZOsuzzBQiA1vkTqDQpeMgNcfUspg43Wg-JU-jb-ub75MNndo3J1_Hl4rxXEpkGeSRwpEyvgnBW6daXx21PysENTSjxmbUsA7NqD5qni_OOhh9cF7Xpgq_QobAWIYYOTZyIZ7qrfV_Cf43_wGcdXH4</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Charles, Denis X.</creator><creator>Lauter, Kristin E.</creator><creator>Goren, Eyal Z.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Cryptographic Hash Functions from Expander Graphs</title><author>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Curves</topic><topic>Exact sciences and technology</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, Denis X.</creatorcontrib><creatorcontrib>Lauter, Kristin E.</creatorcontrib><creatorcontrib>Goren, Eyal Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, Denis X.</au><au>Lauter, Kristin E.</au><au>Goren, Eyal Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptographic Hash Functions from Expander Graphs</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>22</volume><issue>1</issue><spage>93</spage><epage>113</epage><pages>93-113</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over
with
ℓ
-isogenies,
ℓ
a prime different from
p
), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00145-007-9002-x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-2790 |
ispartof | Journal of cryptology, 2009-01, Vol.22 (1), p.93-113 |
issn | 0933-2790 1432-1378 |
language | eng |
recordid | cdi_proquest_journals_2387712608 |
source | Springer Online Journals Complete |
subjects | Applied sciences Coding and Information Theory Combinatorics Communications Engineering Computational Mathematics and Numerical Analysis Computer Science Cryptography Curves Exact sciences and technology Graphical representations Graphs Group theory Information, signal and communications theory Networks Probability Theory and Stochastic Processes Signal and communications theory Telecommunications and information theory |
title | Cryptographic Hash Functions from Expander Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptographic%20Hash%20Functions%20from%20Expander%20Graphs&rft.jtitle=Journal%20of%20cryptology&rft.au=Charles,%20Denis%20X.&rft.date=2009-01-01&rft.volume=22&rft.issue=1&rft.spage=93&rft.epage=113&rft.pages=93-113&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-007-9002-x&rft_dat=%3Cproquest_cross%3E2387712608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387712608&rft_id=info:pmid/&rfr_iscdi=true |