Cryptographic Hash Functions from Expander Graphs

We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cryptology 2009-01, Vol.22 (1), p.93-113
Hauptverfasser: Charles, Denis X., Lauter, Kristin E., Goren, Eyal Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 93
container_title Journal of cryptology
container_volume 22
creator Charles, Denis X.
Lauter, Kristin E.
Goren, Eyal Z.
description We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over with ℓ -isogenies, ℓ a prime different from  p ), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.
doi_str_mv 10.1007/s00145-007-9002-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387712608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387712608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeC-Bi9N2ma9lHG_ggDX_Q5pFmydWxtTTrovr0pHfrk071wf-fcwyHkEeEFAeRrAMBU0LjSAoDR_opMMOWMIpf5NZlAwTllsoBbchfCPtJSSD4hOPPntmu2Xre7yiQrHXbJ4lSbrmrqkDjfHJN53-p6Y32yHKBwT26cPgT7cJlT8rWYf85WdP2xfJ-9ralJheioRUyZMXleIje8NAyc3gBHiWWZOsuzzBQiA1vkTqDQpeMgNcfUspg43Wg-JU-jb-ub75MNndo3J1_Hl4rxXEpkGeSRwpEyvgnBW6daXx21PysENTSjxmbUsA7NqD5qni_OOhh9cF7Xpgq_QobAWIYYOTZyIZ7qrfV_Cf43_wGcdXH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387712608</pqid></control><display><type>article</type><title>Cryptographic Hash Functions from Expander Graphs</title><source>Springer Online Journals Complete</source><creator>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</creator><creatorcontrib>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</creatorcontrib><description>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over with ℓ -isogenies, ℓ a prime different from  p ), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-007-9002-x</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Applied sciences ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational Mathematics and Numerical Analysis ; Computer Science ; Cryptography ; Curves ; Exact sciences and technology ; Graphical representations ; Graphs ; Group theory ; Information, signal and communications theory ; Networks ; Probability Theory and Stochastic Processes ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Journal of cryptology, 2009-01, Vol.22 (1), p.93-113</ispartof><rights>International Association for Cryptologic Research 2007</rights><rights>2009 INIST-CNRS</rights><rights>International Association for Cryptologic Research 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</citedby><cites>FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00145-007-9002-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00145-007-9002-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21022611$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, Denis X.</creatorcontrib><creatorcontrib>Lauter, Kristin E.</creatorcontrib><creatorcontrib>Goren, Eyal Z.</creatorcontrib><title>Cryptographic Hash Functions from Expander Graphs</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over with ℓ -isogenies, ℓ a prime different from  p ), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</description><subject>Applied sciences</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Curves</subject><subject>Exact sciences and technology</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeC-Bi9N2ma9lHG_ggDX_Q5pFmydWxtTTrovr0pHfrk071wf-fcwyHkEeEFAeRrAMBU0LjSAoDR_opMMOWMIpf5NZlAwTllsoBbchfCPtJSSD4hOPPntmu2Xre7yiQrHXbJ4lSbrmrqkDjfHJN53-p6Y32yHKBwT26cPgT7cJlT8rWYf85WdP2xfJ-9ralJheioRUyZMXleIje8NAyc3gBHiWWZOsuzzBQiA1vkTqDQpeMgNcfUspg43Wg-JU-jb-ub75MNndo3J1_Hl4rxXEpkGeSRwpEyvgnBW6daXx21PysENTSjxmbUsA7NqD5qni_OOhh9cF7Xpgq_QobAWIYYOTZyIZ7qrfV_Cf43_wGcdXH4</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Charles, Denis X.</creator><creator>Lauter, Kristin E.</creator><creator>Goren, Eyal Z.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Cryptographic Hash Functions from Expander Graphs</title><author>Charles, Denis X. ; Lauter, Kristin E. ; Goren, Eyal Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e1142cc88b13c3bc20fad03171bb4fe366c9560e98f515abf307a314e21374da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Curves</topic><topic>Exact sciences and technology</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, Denis X.</creatorcontrib><creatorcontrib>Lauter, Kristin E.</creatorcontrib><creatorcontrib>Goren, Eyal Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, Denis X.</au><au>Lauter, Kristin E.</au><au>Goren, Eyal Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptographic Hash Functions from Expander Graphs</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>22</volume><issue>1</issue><spage>93</spage><epage>113</epage><pages>93-113</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set of supersingular elliptic curves over with ℓ -isogenies, ℓ a prime different from  p ), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00145-007-9002-x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-2790
ispartof Journal of cryptology, 2009-01, Vol.22 (1), p.93-113
issn 0933-2790
1432-1378
language eng
recordid cdi_proquest_journals_2387712608
source Springer Online Journals Complete
subjects Applied sciences
Coding and Information Theory
Combinatorics
Communications Engineering
Computational Mathematics and Numerical Analysis
Computer Science
Cryptography
Curves
Exact sciences and technology
Graphical representations
Graphs
Group theory
Information, signal and communications theory
Networks
Probability Theory and Stochastic Processes
Signal and communications theory
Telecommunications and information theory
title Cryptographic Hash Functions from Expander Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptographic%20Hash%20Functions%20from%20Expander%20Graphs&rft.jtitle=Journal%20of%20cryptology&rft.au=Charles,%20Denis%20X.&rft.date=2009-01-01&rft.volume=22&rft.issue=1&rft.spage=93&rft.epage=113&rft.pages=93-113&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-007-9002-x&rft_dat=%3Cproquest_cross%3E2387712608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387712608&rft_id=info:pmid/&rfr_iscdi=true