Contamination source detection in water distribution networks using belief propagation

We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2020-04, Vol.34 (3-4), p.493-511
Hauptverfasser: Ortega, Ernesto, Braunstein, Alfredo, Lage-Castellanos, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 3-4
container_start_page 493
container_title Stochastic environmental research and risk assessment
container_volume 34
creator Ortega, Ernesto
Braunstein, Alfredo
Lage-Castellanos, Alejandro
description We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method relies on strong simplifications considering binary clean/contaminated states for nodes in discrete time, and therefore focuses on the time structure of the sensed patterns rather than on the concentration levels. As a result, a posterior probability over discrete variables is written, and posterior marginals are computed using belief propagation algorithm. The resulting algorithm runs once on a given observation and reports probabilities for each node being the source and for the contamination patterns altogether. We test it on Anytown model, proving its efficacy even when only a single sensed node is known.
doi_str_mv 10.1007/s00477-020-01788-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387553495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387553495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f03057eb5657ef3c51ca286742818c5e8796f86a02aa76d0eb8322ec0db236e73</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0DnhY8r06SzSZ7lOIXFLyo15DNzpZom61JltJ_b9yK3rzMDI_3wTxCLilcUwB5EwEqKUtgUAKVSpWHEzKjFa9LzkRz-ntXcE4WMbo2iwRvGgoz8rYcfDJb501ygy_iMAaLRYcJ7QQ4X-xNwlB0Lqbg2nFCPab9ED5iMUbn10WLG4d9sQvDzqwnowty1ptNxMXPnpPX-7uX5WO5en54Wt6uSstpk8oeOAiJrajz7LkV1BqmalkxRZUVqGRT96o2wIyRdQfYKs4YWuhaxmuUfE6ujr45-3PEmPR7_sDnSM24kkLwqhGZxY4sG4YYA_Z6F9zWhIOmoL8r1McKda5QTxXqQxbxoyhmsl9j-LP-R_UFN1N11Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387553495</pqid></control><display><type>article</type><title>Contamination source detection in water distribution networks using belief propagation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ortega, Ernesto ; Braunstein, Alfredo ; Lage-Castellanos, Alejandro</creator><creatorcontrib>Ortega, Ernesto ; Braunstein, Alfredo ; Lage-Castellanos, Alejandro</creatorcontrib><description>We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method relies on strong simplifications considering binary clean/contaminated states for nodes in discrete time, and therefore focuses on the time structure of the sensed patterns rather than on the concentration levels. As a result, a posterior probability over discrete variables is written, and posterior marginals are computed using belief propagation algorithm. The resulting algorithm runs once on a given observation and reports probabilities for each node being the source and for the contamination patterns altogether. We test it on Anytown model, proving its efficacy even when only a single sensed node is known.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-020-01788-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Aquatic Pollution ; Bayesian analysis ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Conditional probability ; Contamination ; Earth and Environmental Science ; Earth Sciences ; Environment ; Math. Appl. in Environmental Science ; Nodes ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Propagation ; Statistics for Engineering ; Waste Water Technology ; Water distribution ; Water engineering ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2020-04, Vol.34 (3-4), p.493-511</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f03057eb5657ef3c51ca286742818c5e8796f86a02aa76d0eb8322ec0db236e73</citedby><cites>FETCH-LOGICAL-c319t-f03057eb5657ef3c51ca286742818c5e8796f86a02aa76d0eb8322ec0db236e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-020-01788-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-020-01788-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ortega, Ernesto</creatorcontrib><creatorcontrib>Braunstein, Alfredo</creatorcontrib><creatorcontrib>Lage-Castellanos, Alejandro</creatorcontrib><title>Contamination source detection in water distribution networks using belief propagation</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method relies on strong simplifications considering binary clean/contaminated states for nodes in discrete time, and therefore focuses on the time structure of the sensed patterns rather than on the concentration levels. As a result, a posterior probability over discrete variables is written, and posterior marginals are computed using belief propagation algorithm. The resulting algorithm runs once on a given observation and reports probabilities for each node being the source and for the contamination patterns altogether. We test it on Anytown model, proving its efficacy even when only a single sensed node is known.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Bayesian analysis</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Conditional probability</subject><subject>Contamination</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Math. Appl. in Environmental Science</subject><subject>Nodes</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Propagation</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water distribution</subject><subject>Water engineering</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgqf0DnhY8r06SzSZ7lOIXFLyo15DNzpZom61JltJ_b9yK3rzMDI_3wTxCLilcUwB5EwEqKUtgUAKVSpWHEzKjFa9LzkRz-ntXcE4WMbo2iwRvGgoz8rYcfDJb501ygy_iMAaLRYcJ7QQ4X-xNwlB0Lqbg2nFCPab9ED5iMUbn10WLG4d9sQvDzqwnowty1ptNxMXPnpPX-7uX5WO5en54Wt6uSstpk8oeOAiJrajz7LkV1BqmalkxRZUVqGRT96o2wIyRdQfYKs4YWuhaxmuUfE6ujr45-3PEmPR7_sDnSM24kkLwqhGZxY4sG4YYA_Z6F9zWhIOmoL8r1McKda5QTxXqQxbxoyhmsl9j-LP-R_UFN1N11Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ortega, Ernesto</creator><creator>Braunstein, Alfredo</creator><creator>Lage-Castellanos, Alejandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope></search><sort><creationdate>20200401</creationdate><title>Contamination source detection in water distribution networks using belief propagation</title><author>Ortega, Ernesto ; Braunstein, Alfredo ; Lage-Castellanos, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f03057eb5657ef3c51ca286742818c5e8796f86a02aa76d0eb8322ec0db236e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Bayesian analysis</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Conditional probability</topic><topic>Contamination</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Math. Appl. in Environmental Science</topic><topic>Nodes</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Propagation</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water distribution</topic><topic>Water engineering</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega, Ernesto</creatorcontrib><creatorcontrib>Braunstein, Alfredo</creatorcontrib><creatorcontrib>Lage-Castellanos, Alejandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega, Ernesto</au><au>Braunstein, Alfredo</au><au>Lage-Castellanos, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contamination source detection in water distribution networks using belief propagation</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>34</volume><issue>3-4</issue><spage>493</spage><epage>511</epage><pages>493-511</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method relies on strong simplifications considering binary clean/contaminated states for nodes in discrete time, and therefore focuses on the time structure of the sensed patterns rather than on the concentration levels. As a result, a posterior probability over discrete variables is written, and posterior marginals are computed using belief propagation algorithm. The resulting algorithm runs once on a given observation and reports probabilities for each node being the source and for the contamination patterns altogether. We test it on Anytown model, proving its efficacy even when only a single sensed node is known.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-020-01788-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2020-04, Vol.34 (3-4), p.493-511
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_2387553495
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Aquatic Pollution
Bayesian analysis
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Conditional probability
Contamination
Earth and Environmental Science
Earth Sciences
Environment
Math. Appl. in Environmental Science
Nodes
Original Paper
Physics
Probability Theory and Stochastic Processes
Propagation
Statistics for Engineering
Waste Water Technology
Water distribution
Water engineering
Water Management
Water Pollution Control
title Contamination source detection in water distribution networks using belief propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contamination%20source%20detection%20in%20water%20distribution%20networks%20using%20belief%20propagation&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Ortega,%20Ernesto&rft.date=2020-04-01&rft.volume=34&rft.issue=3-4&rft.spage=493&rft.epage=511&rft.pages=493-511&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-020-01788-y&rft_dat=%3Cproquest_cross%3E2387553495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387553495&rft_id=info:pmid/&rfr_iscdi=true