Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions
Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland wit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7263-7270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7270 |
---|---|
container_issue | 13 |
container_start_page | 7263 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Gravuer, Kelly Eskelinen, Anu Winbourne, Joy B. Harrison, Susan P. |
description | Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities. |
doi_str_mv | 10.1073/pnas.1908117117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2387487352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929447</jstor_id><sourcerecordid>26929447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c864675b1cbf727583c9154736231feb9f6319fdfc15878dd6a7c63bceaef80f3</originalsourceid><addsrcrecordid>eNqNkc2L1TAUxYMoznN07UopuJTO5KtJuhHk4RcMuFG3IU1v5uXRJjVJlfnvTXnjU3dCICH3d869yUHoOcFXBEt2vQSTr0iPFSGyrgdoR3BPWsF7_BDtMKayVZzyC_Qk5yPGuO8UfowuGCWi63i3Q8u3dQqQzOAnX-4aE8YmQfa5mGCh8aEpB2jyYoo3U3OAAineQoCNja7J0U_N7G2Kw1a3cZ7X4IuH3KxhhLR5xTVVJzOO9T6G_BQ9cmbK8Ox-v0Rf37_7sv_Y3nz-8Gn_9qa1nLPSWiW4kN1A7OAklZ1iticdl0xQRhwMvROM9G50lnRKqnEURlrBBgsGnMKOXaI3J99lHWYYLYSSzKSX5GeT7nQ0Xv9bCf6gb-MPLQmjVLJq8OreIMXvK-Sij_Upoc6sKVOSK8k6WqnrE1X_IOcE7tyBYL1FpLeI9J-IquLl34Od-d-ZVOD1CfgJQ3TZeqhRnLEaYm1LlCL1xEWl1f_Te1_MlsI-rqFU6YuT9JhLTGcNFT3tef3qX3ewu2o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387487352</pqid></control><display><type>article</type><title>Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gravuer, Kelly ; Eskelinen, Anu ; Winbourne, Joy B. ; Harrison, Susan P.</creator><creatorcontrib>Gravuer, Kelly ; Eskelinen, Anu ; Winbourne, Joy B. ; Harrison, Susan P.</creatorcontrib><description>Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1908117117</identifier><identifier>PMID: 32165545</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Antagonists ; Anthropogenic factors ; Archaea - physiology ; Bacteria ; Biological Sciences ; Community composition ; Composition ; Conservation of Natural Resources - methods ; Demography - methods ; Ecosystem ; Ecosystems ; Environmental changes ; Eutrophication ; Fungi ; Fungi - physiology ; Grasslands ; Heterogeneity ; Microbial activity ; Microbiota - physiology ; Microorganisms ; Multidisciplinary Sciences ; Nitrification ; Nitrogen - analysis ; Nitrogen cycle ; Nutrient cycles ; Nutrients ; Plant communities ; Plant populations ; Rain ; Rainfall ; Science & Technology ; Science & Technology - Other Topics ; Soil ; Soil fertility ; Soil Microbiology ; Soil microorganisms ; Soil testing ; Soil types ; Soils ; Spatial heterogeneity ; Symbiosis ; Variability ; Water</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7263-7270</ispartof><rights>Copyright National Academy of Sciences Mar 31, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>22</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523188100046</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-c864675b1cbf727583c9154736231feb9f6319fdfc15878dd6a7c63bceaef80f3</citedby><cites>FETCH-LOGICAL-c443t-c864675b1cbf727583c9154736231feb9f6319fdfc15878dd6a7c63bceaef80f3</cites><orcidid>0000-0002-2567-658X ; 0000-0003-1707-5263 ; 0000-0001-6278-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929447$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929447$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,28252,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32165545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravuer, Kelly</creatorcontrib><creatorcontrib>Eskelinen, Anu</creatorcontrib><creatorcontrib>Winbourne, Joy B.</creatorcontrib><creatorcontrib>Harrison, Susan P.</creatorcontrib><title>Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities.</description><subject>Antagonists</subject><subject>Anthropogenic factors</subject><subject>Archaea - physiology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Community composition</subject><subject>Composition</subject><subject>Conservation of Natural Resources - methods</subject><subject>Demography - methods</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Eutrophication</subject><subject>Fungi</subject><subject>Fungi - physiology</subject><subject>Grasslands</subject><subject>Heterogeneity</subject><subject>Microbial activity</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>Multidisciplinary Sciences</subject><subject>Nitrification</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen cycle</subject><subject>Nutrient cycles</subject><subject>Nutrients</subject><subject>Plant communities</subject><subject>Plant populations</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Soil</subject><subject>Soil fertility</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil testing</subject><subject>Soil types</subject><subject>Soils</subject><subject>Spatial heterogeneity</subject><subject>Symbiosis</subject><subject>Variability</subject><subject>Water</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2L1TAUxYMoznN07UopuJTO5KtJuhHk4RcMuFG3IU1v5uXRJjVJlfnvTXnjU3dCICH3d869yUHoOcFXBEt2vQSTr0iPFSGyrgdoR3BPWsF7_BDtMKayVZzyC_Qk5yPGuO8UfowuGCWi63i3Q8u3dQqQzOAnX-4aE8YmQfa5mGCh8aEpB2jyYoo3U3OAAineQoCNja7J0U_N7G2Kw1a3cZ7X4IuH3KxhhLR5xTVVJzOO9T6G_BQ9cmbK8Ox-v0Rf37_7sv_Y3nz-8Gn_9qa1nLPSWiW4kN1A7OAklZ1iticdl0xQRhwMvROM9G50lnRKqnEURlrBBgsGnMKOXaI3J99lHWYYLYSSzKSX5GeT7nQ0Xv9bCf6gb-MPLQmjVLJq8OreIMXvK-Sij_Upoc6sKVOSK8k6WqnrE1X_IOcE7tyBYL1FpLeI9J-IquLl34Od-d-ZVOD1CfgJQ3TZeqhRnLEaYm1LlCL1xEWl1f_Te1_MlsI-rqFU6YuT9JhLTGcNFT3tef3qX3ewu2o</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Gravuer, Kelly</creator><creator>Eskelinen, Anu</creator><creator>Winbourne, Joy B.</creator><creator>Harrison, Susan P.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2567-658X</orcidid><orcidid>https://orcid.org/0000-0003-1707-5263</orcidid><orcidid>https://orcid.org/0000-0001-6278-2181</orcidid></search><sort><creationdate>20200331</creationdate><title>Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions</title><author>Gravuer, Kelly ; Eskelinen, Anu ; Winbourne, Joy B. ; Harrison, Susan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c864675b1cbf727583c9154736231feb9f6319fdfc15878dd6a7c63bceaef80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antagonists</topic><topic>Anthropogenic factors</topic><topic>Archaea - physiology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Community composition</topic><topic>Composition</topic><topic>Conservation of Natural Resources - methods</topic><topic>Demography - methods</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Eutrophication</topic><topic>Fungi</topic><topic>Fungi - physiology</topic><topic>Grasslands</topic><topic>Heterogeneity</topic><topic>Microbial activity</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>Multidisciplinary Sciences</topic><topic>Nitrification</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen cycle</topic><topic>Nutrient cycles</topic><topic>Nutrients</topic><topic>Plant communities</topic><topic>Plant populations</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Soil</topic><topic>Soil fertility</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil testing</topic><topic>Soil types</topic><topic>Soils</topic><topic>Spatial heterogeneity</topic><topic>Symbiosis</topic><topic>Variability</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravuer, Kelly</creatorcontrib><creatorcontrib>Eskelinen, Anu</creatorcontrib><creatorcontrib>Winbourne, Joy B.</creatorcontrib><creatorcontrib>Harrison, Susan P.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravuer, Kelly</au><au>Eskelinen, Anu</au><au>Winbourne, Joy B.</au><au>Harrison, Susan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7263</spage><epage>7270</epage><pages>7263-7270</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32165545</pmid><doi>10.1073/pnas.1908117117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2567-658X</orcidid><orcidid>https://orcid.org/0000-0003-1707-5263</orcidid><orcidid>https://orcid.org/0000-0001-6278-2181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7263-7270 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_2387487352 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Antagonists Anthropogenic factors Archaea - physiology Bacteria Biological Sciences Community composition Composition Conservation of Natural Resources - methods Demography - methods Ecosystem Ecosystems Environmental changes Eutrophication Fungi Fungi - physiology Grasslands Heterogeneity Microbial activity Microbiota - physiology Microorganisms Multidisciplinary Sciences Nitrification Nitrogen - analysis Nitrogen cycle Nutrient cycles Nutrients Plant communities Plant populations Rain Rainfall Science & Technology Science & Technology - Other Topics Soil Soil fertility Soil Microbiology Soil microorganisms Soil testing Soil types Soils Spatial heterogeneity Symbiosis Variability Water |
title | Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vulnerability%20and%20resistance%20in%20the%20spatial%20heterogeneity%20of%20soil%20microbial%20communities%20under%20resource%20additions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gravuer,%20Kelly&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7263&rft.epage=7270&rft.pages=7263-7270&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1908117117&rft_dat=%3Cjstor_proqu%3E26929447%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387487352&rft_id=info:pmid/32165545&rft_jstor_id=26929447&rfr_iscdi=true |