Material properties identification of a piezoelectric beam using inverse method

This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365
Hauptverfasser: Nematollahi, Mohammad Amin, Hasanshahi, Behzad, Eftekhari, Malihe, Safavi, Ali Akbar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1365
container_issue 7
container_start_page 1351
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 234
creator Nematollahi, Mohammad Amin
Hasanshahi, Behzad
Eftekhari, Malihe
Safavi, Ali Akbar
description This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.
doi_str_mv 10.1177/0954406219891746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387220766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406219891746</sage_id><sourcerecordid>2387220766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouFbvHgOeq_lqkh5l8QtW9qLnkqTTNUvb1CQr6F9vlxUEwbnM4f3em-EhdEnJNaVK3ZC6EoJIRmtdUyXkEVowImjJas2P0WIvl3v9FJ2ltCXzMFkt0PrZZIje9HiKYYKYPSTsWxiz77wz2YcRhw4bPHn4CtCDy9E7bMEMeJf8uMF-_ICYAA-Q30J7jk460ye4-NkFer2_e1k-lqv1w9PydlU6TupcClU7LbWwjrZOE6Ol7aSSoDRYKohVVUWlZISz1kmtbNsaJrjopOSWae54ga4OufPb7ztIudmGXRznkw3jWjFG1MwWiBwoF0NKEbpmin4w8bOhpNnX1vytbbaUB0syG_gN_Zf_BnvubEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387220766</pqid></control><display><type>article</type><title>Material properties identification of a piezoelectric beam using inverse method</title><source>SAGE Complete</source><creator>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</creator><creatorcontrib>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</creatorcontrib><description>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406219891746</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuation ; Cantilever beams ; Data analysis ; Deflection ; Dielectric properties ; Finite element method ; Identification ; Inverse method ; Material properties ; Multilayer perceptrons ; Neural networks ; Piezoelectricity ; Radial basis function ; Wavelet analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365</ispartof><rights>IMechE 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</citedby><cites>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</cites><orcidid>0000-0001-5780-2723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406219891746$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406219891746$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Nematollahi, Mohammad Amin</creatorcontrib><creatorcontrib>Hasanshahi, Behzad</creatorcontrib><creatorcontrib>Eftekhari, Malihe</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><title>Material properties identification of a piezoelectric beam using inverse method</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</description><subject>Actuation</subject><subject>Cantilever beams</subject><subject>Data analysis</subject><subject>Deflection</subject><subject>Dielectric properties</subject><subject>Finite element method</subject><subject>Identification</subject><subject>Inverse method</subject><subject>Material properties</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Piezoelectricity</subject><subject>Radial basis function</subject><subject>Wavelet analysis</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouFbvHgOeq_lqkh5l8QtW9qLnkqTTNUvb1CQr6F9vlxUEwbnM4f3em-EhdEnJNaVK3ZC6EoJIRmtdUyXkEVowImjJas2P0WIvl3v9FJ2ltCXzMFkt0PrZZIje9HiKYYKYPSTsWxiz77wz2YcRhw4bPHn4CtCDy9E7bMEMeJf8uMF-_ICYAA-Q30J7jk460ye4-NkFer2_e1k-lqv1w9PydlU6TupcClU7LbWwjrZOE6Ol7aSSoDRYKohVVUWlZISz1kmtbNsaJrjopOSWae54ga4OufPb7ztIudmGXRznkw3jWjFG1MwWiBwoF0NKEbpmin4w8bOhpNnX1vytbbaUB0syG_gN_Zf_BnvubEs</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nematollahi, Mohammad Amin</creator><creator>Hasanshahi, Behzad</creator><creator>Eftekhari, Malihe</creator><creator>Safavi, Ali Akbar</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-5780-2723</orcidid></search><sort><creationdate>202004</creationdate><title>Material properties identification of a piezoelectric beam using inverse method</title><author>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuation</topic><topic>Cantilever beams</topic><topic>Data analysis</topic><topic>Deflection</topic><topic>Dielectric properties</topic><topic>Finite element method</topic><topic>Identification</topic><topic>Inverse method</topic><topic>Material properties</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Piezoelectricity</topic><topic>Radial basis function</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nematollahi, Mohammad Amin</creatorcontrib><creatorcontrib>Hasanshahi, Behzad</creatorcontrib><creatorcontrib>Eftekhari, Malihe</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nematollahi, Mohammad Amin</au><au>Hasanshahi, Behzad</au><au>Eftekhari, Malihe</au><au>Safavi, Ali Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material properties identification of a piezoelectric beam using inverse method</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>234</volume><issue>7</issue><spage>1351</spage><epage>1365</epage><pages>1351-1365</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406219891746</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5780-2723</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2387220766
source SAGE Complete
subjects Actuation
Cantilever beams
Data analysis
Deflection
Dielectric properties
Finite element method
Identification
Inverse method
Material properties
Multilayer perceptrons
Neural networks
Piezoelectricity
Radial basis function
Wavelet analysis
title Material properties identification of a piezoelectric beam using inverse method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20properties%20identification%20of%20a%20piezoelectric%20beam%20using%20inverse%20method&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Nematollahi,%20Mohammad%20Amin&rft.date=2020-04&rft.volume=234&rft.issue=7&rft.spage=1351&rft.epage=1365&rft.pages=1351-1365&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406219891746&rft_dat=%3Cproquest_cross%3E2387220766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387220766&rft_id=info:pmid/&rft_sage_id=10.1177_0954406219891746&rfr_iscdi=true