Material properties identification of a piezoelectric beam using inverse method
This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1365 |
---|---|
container_issue | 7 |
container_start_page | 1351 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 234 |
creator | Nematollahi, Mohammad Amin Hasanshahi, Behzad Eftekhari, Malihe Safavi, Ali Akbar |
description | This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem. |
doi_str_mv | 10.1177/0954406219891746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387220766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406219891746</sage_id><sourcerecordid>2387220766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouFbvHgOeq_lqkh5l8QtW9qLnkqTTNUvb1CQr6F9vlxUEwbnM4f3em-EhdEnJNaVK3ZC6EoJIRmtdUyXkEVowImjJas2P0WIvl3v9FJ2ltCXzMFkt0PrZZIje9HiKYYKYPSTsWxiz77wz2YcRhw4bPHn4CtCDy9E7bMEMeJf8uMF-_ICYAA-Q30J7jk460ye4-NkFer2_e1k-lqv1w9PydlU6TupcClU7LbWwjrZOE6Ol7aSSoDRYKohVVUWlZISz1kmtbNsaJrjopOSWae54ga4OufPb7ztIudmGXRznkw3jWjFG1MwWiBwoF0NKEbpmin4w8bOhpNnX1vytbbaUB0syG_gN_Zf_BnvubEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387220766</pqid></control><display><type>article</type><title>Material properties identification of a piezoelectric beam using inverse method</title><source>SAGE Complete</source><creator>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</creator><creatorcontrib>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</creatorcontrib><description>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406219891746</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuation ; Cantilever beams ; Data analysis ; Deflection ; Dielectric properties ; Finite element method ; Identification ; Inverse method ; Material properties ; Multilayer perceptrons ; Neural networks ; Piezoelectricity ; Radial basis function ; Wavelet analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365</ispartof><rights>IMechE 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</citedby><cites>FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</cites><orcidid>0000-0001-5780-2723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406219891746$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406219891746$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Nematollahi, Mohammad Amin</creatorcontrib><creatorcontrib>Hasanshahi, Behzad</creatorcontrib><creatorcontrib>Eftekhari, Malihe</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><title>Material properties identification of a piezoelectric beam using inverse method</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</description><subject>Actuation</subject><subject>Cantilever beams</subject><subject>Data analysis</subject><subject>Deflection</subject><subject>Dielectric properties</subject><subject>Finite element method</subject><subject>Identification</subject><subject>Inverse method</subject><subject>Material properties</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Piezoelectricity</subject><subject>Radial basis function</subject><subject>Wavelet analysis</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouFbvHgOeq_lqkh5l8QtW9qLnkqTTNUvb1CQr6F9vlxUEwbnM4f3em-EhdEnJNaVK3ZC6EoJIRmtdUyXkEVowImjJas2P0WIvl3v9FJ2ltCXzMFkt0PrZZIje9HiKYYKYPSTsWxiz77wz2YcRhw4bPHn4CtCDy9E7bMEMeJf8uMF-_ICYAA-Q30J7jk460ye4-NkFer2_e1k-lqv1w9PydlU6TupcClU7LbWwjrZOE6Ol7aSSoDRYKohVVUWlZISz1kmtbNsaJrjopOSWae54ga4OufPb7ztIudmGXRznkw3jWjFG1MwWiBwoF0NKEbpmin4w8bOhpNnX1vytbbaUB0syG_gN_Zf_BnvubEs</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nematollahi, Mohammad Amin</creator><creator>Hasanshahi, Behzad</creator><creator>Eftekhari, Malihe</creator><creator>Safavi, Ali Akbar</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-5780-2723</orcidid></search><sort><creationdate>202004</creationdate><title>Material properties identification of a piezoelectric beam using inverse method</title><author>Nematollahi, Mohammad Amin ; Hasanshahi, Behzad ; Eftekhari, Malihe ; Safavi, Ali Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-479c8684bc1dc80a86bf676e78eb140b7551662032dc687bdda2434f663b283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuation</topic><topic>Cantilever beams</topic><topic>Data analysis</topic><topic>Deflection</topic><topic>Dielectric properties</topic><topic>Finite element method</topic><topic>Identification</topic><topic>Inverse method</topic><topic>Material properties</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Piezoelectricity</topic><topic>Radial basis function</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nematollahi, Mohammad Amin</creatorcontrib><creatorcontrib>Hasanshahi, Behzad</creatorcontrib><creatorcontrib>Eftekhari, Malihe</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nematollahi, Mohammad Amin</au><au>Hasanshahi, Behzad</au><au>Eftekhari, Malihe</au><au>Safavi, Ali Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material properties identification of a piezoelectric beam using inverse method</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>234</volume><issue>7</issue><spage>1351</spage><epage>1365</epage><pages>1351-1365</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>This paper presents an inverse method for material properties identification of a piezoelectric beam (piezoelectric charge and relative dielectric coefficients) using a wavelet-based neural network as an inverse tool. The identification analysis is carried out by using two approaches. In the first approach, i.e. sensor mode analysis, the input data for wavelet-based neural network training are measured voltages at several specific points on the beam's top surface resulting from the applied beam tip deflection. In the second approach, i.e. actuation mode analysis, the input data are values of the beam tip deflection caused by applying voltage on the beam's top surface. In this study, the input parameters employed to train the wavelet-based neural network are obtained using the finite element method. The identification results are compared with those of some conventional neural networks including radial basis function and multilayer perceptron. The results show that the proposed neural network is an efficient tool in the material properties identification problem.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406219891746</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5780-2723</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2020-04, Vol.234 (7), p.1351-1365 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2387220766 |
source | SAGE Complete |
subjects | Actuation Cantilever beams Data analysis Deflection Dielectric properties Finite element method Identification Inverse method Material properties Multilayer perceptrons Neural networks Piezoelectricity Radial basis function Wavelet analysis |
title | Material properties identification of a piezoelectric beam using inverse method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20properties%20identification%20of%20a%20piezoelectric%20beam%20using%20inverse%20method&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Nematollahi,%20Mohammad%20Amin&rft.date=2020-04&rft.volume=234&rft.issue=7&rft.spage=1351&rft.epage=1365&rft.pages=1351-1365&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406219891746&rft_dat=%3Cproquest_cross%3E2387220766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387220766&rft_id=info:pmid/&rft_sage_id=10.1177_0954406219891746&rfr_iscdi=true |