The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure

Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coral reefs 2020-04, Vol.39 (2), p.451-465
Hauptverfasser: Ip, Yuen K., Hiong, Kum C., Teng, Joey H. Q., Boo, Mel V., Choo, Celine Y. L., Wong, Wai P., Chew, Shit F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 2
container_start_page 451
container_title Coral reefs
container_volume 39
creator Ip, Yuen K.
Hiong, Kum C.
Teng, Joey H. Q.
Boo, Mel V.
Choo, Celine Y. L.
Wong, Wai P.
Chew, Shit F.
description Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain nitrogen from the host clam. Unlike algae and plants, aquatic animals generally absorb little nitrate (NO 3 − ) from the environment. Here, we report for the first time that the fluted giant clam, Tridacna squamosa , absorbed NO 3 − from the external seawater at a rate faster in light than in darkness. In addition, its ctenidium (gill) expressed a homolog of SIALIN (SIALIN-like), which is known to function as an electrogenic H + :2NO 3 − cotransporter and facilitate NO 3 − excretion in acinar cells of human salivary glands. The complete cDNA coding sequence of SIALIN-like of T. squamosa , which was derived from the host clam, consisted of 1905 bp and encoded for 634 amino acids of 69.6 kDa. It had the strongest expression in the ctenidium and weak expression in the colorful outer mantle and hepatopancreas. Being localized in the apical membrane of the epithelial cells at the tips of ctenidial filaments of T. squamosa , SIALIN-like was well positioned to absorb NO 3 − from the ambient seawater. Furthermore, the transcript level and protein abundance of SIALIN-like /SIALIN-like increased significantly in the ctenidium during 12 h of light exposure, denoting its possible role in light-enhanced NO 3 − absorption in T. squamosa . While scleractinian corals are known to absorb exogenous NO 3 − to benefit their intracellular zooxanthellae, they display light-independent NO 3 − absorption. Hence, the ability of T. squamosa to conduct light-enhanced NO 3 − absorption could be related to the extracellular location of its zooxanthellae.
doi_str_mv 10.1007/s00338-020-01907-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387141622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387141622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-9cf3282dc29ff2727486699d5f46032bcddbca4e65b9046ae7f6da5c554a8b823</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1EJYaWF2BliU0RCpzYzsXsqorSkUbtgmFtOb5kXCV2ajtSeQPWfaA-TJ-EpIPEjtXRufzfr6MfofclfC4Bmi8JgNK2AAIFlByagr9Cm5JRUgBvqtdoAw0hBQPSvkFvU7oDgKridIOe9geD7TBno3HvpM9YDXLE5_votFRe4nQ_yzEk-RE7r6KRySTsXY4yGyy7FOKUXfBYeo3nKZp-HpZNwnnBmodlkNK6DhZLfAhjGEK_Nj-2F7vtDT6__vSV3NzS59-PWIUF6tMUYjZxdXthqGy8024esZ6j8z0eXH_IKzqkOZozdGLlkMy7v_UU_bz6tr-8Lna337eXF7tCEcp4wZWlpCVaEW4taUjD2rrmXFeW1UBJp7TulGSmrjoOrJamsbWWlaoqJtuuJfQUfThypxjuZ5OyuAtz9IulILRtSlbWZL0ixysVQ0rRWDFFN8r4S5Qg1pzEMSex5CRechJ8EdGjKE3rgyb-Q_9H9Qcv6Zlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387141622</pqid></control><display><type>article</type><title>The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ip, Yuen K. ; Hiong, Kum C. ; Teng, Joey H. Q. ; Boo, Mel V. ; Choo, Celine Y. L. ; Wong, Wai P. ; Chew, Shit F.</creator><creatorcontrib>Ip, Yuen K. ; Hiong, Kum C. ; Teng, Joey H. Q. ; Boo, Mel V. ; Choo, Celine Y. L. ; Wong, Wai P. ; Chew, Shit F.</creatorcontrib><description>Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain nitrogen from the host clam. Unlike algae and plants, aquatic animals generally absorb little nitrate (NO 3 − ) from the environment. Here, we report for the first time that the fluted giant clam, Tridacna squamosa , absorbed NO 3 − from the external seawater at a rate faster in light than in darkness. In addition, its ctenidium (gill) expressed a homolog of SIALIN (SIALIN-like), which is known to function as an electrogenic H + :2NO 3 − cotransporter and facilitate NO 3 − excretion in acinar cells of human salivary glands. The complete cDNA coding sequence of SIALIN-like of T. squamosa , which was derived from the host clam, consisted of 1905 bp and encoded for 634 amino acids of 69.6 kDa. It had the strongest expression in the ctenidium and weak expression in the colorful outer mantle and hepatopancreas. Being localized in the apical membrane of the epithelial cells at the tips of ctenidial filaments of T. squamosa , SIALIN-like was well positioned to absorb NO 3 − from the ambient seawater. Furthermore, the transcript level and protein abundance of SIALIN-like /SIALIN-like increased significantly in the ctenidium during 12 h of light exposure, denoting its possible role in light-enhanced NO 3 − absorption in T. squamosa . While scleractinian corals are known to absorb exogenous NO 3 − to benefit their intracellular zooxanthellae, they display light-independent NO 3 − absorption. Hence, the ability of T. squamosa to conduct light-enhanced NO 3 − absorption could be related to the extracellular location of its zooxanthellae.</description><identifier>ISSN: 0722-4028</identifier><identifier>EISSN: 1432-0975</identifier><identifier>DOI: 10.1007/s00338-020-01907-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Acinar cells ; Algae ; Amino acids ; Ammonium nitrogen ; Aquatic animals ; Aquatic plants ; Biomedical and Life Sciences ; Clams ; Complementary DNA ; Corals ; Darkness ; Dinoflagellates ; DNA ; Epithelial cells ; Excretion ; Extracellular ; Filaments ; Freshwater &amp; Marine Ecology ; Glands ; Hepatopancreas ; Homology ; Hydrogen ; Life Sciences ; Light ; Mantle ; Nitrogen ; Oceanography ; Photosynthates ; Salivary gland ; Salivary glands ; Seawater ; Symbiosis ; Transcription ; Tridacna squamosa ; Tropical climate ; Upper mantle ; Zooxanthellae</subject><ispartof>Coral reefs, 2020-04, Vol.39 (2), p.451-465</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-9cf3282dc29ff2727486699d5f46032bcddbca4e65b9046ae7f6da5c554a8b823</citedby><cites>FETCH-LOGICAL-c2349-9cf3282dc29ff2727486699d5f46032bcddbca4e65b9046ae7f6da5c554a8b823</cites><orcidid>0000-0001-9124-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00338-020-01907-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00338-020-01907-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ip, Yuen K.</creatorcontrib><creatorcontrib>Hiong, Kum C.</creatorcontrib><creatorcontrib>Teng, Joey H. Q.</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Choo, Celine Y. L.</creatorcontrib><creatorcontrib>Wong, Wai P.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><title>The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure</title><title>Coral reefs</title><addtitle>Coral Reefs</addtitle><description>Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain nitrogen from the host clam. Unlike algae and plants, aquatic animals generally absorb little nitrate (NO 3 − ) from the environment. Here, we report for the first time that the fluted giant clam, Tridacna squamosa , absorbed NO 3 − from the external seawater at a rate faster in light than in darkness. In addition, its ctenidium (gill) expressed a homolog of SIALIN (SIALIN-like), which is known to function as an electrogenic H + :2NO 3 − cotransporter and facilitate NO 3 − excretion in acinar cells of human salivary glands. The complete cDNA coding sequence of SIALIN-like of T. squamosa , which was derived from the host clam, consisted of 1905 bp and encoded for 634 amino acids of 69.6 kDa. It had the strongest expression in the ctenidium and weak expression in the colorful outer mantle and hepatopancreas. Being localized in the apical membrane of the epithelial cells at the tips of ctenidial filaments of T. squamosa , SIALIN-like was well positioned to absorb NO 3 − from the ambient seawater. Furthermore, the transcript level and protein abundance of SIALIN-like /SIALIN-like increased significantly in the ctenidium during 12 h of light exposure, denoting its possible role in light-enhanced NO 3 − absorption in T. squamosa . While scleractinian corals are known to absorb exogenous NO 3 − to benefit their intracellular zooxanthellae, they display light-independent NO 3 − absorption. Hence, the ability of T. squamosa to conduct light-enhanced NO 3 − absorption could be related to the extracellular location of its zooxanthellae.</description><subject>Absorption</subject><subject>Acinar cells</subject><subject>Algae</subject><subject>Amino acids</subject><subject>Ammonium nitrogen</subject><subject>Aquatic animals</subject><subject>Aquatic plants</subject><subject>Biomedical and Life Sciences</subject><subject>Clams</subject><subject>Complementary DNA</subject><subject>Corals</subject><subject>Darkness</subject><subject>Dinoflagellates</subject><subject>DNA</subject><subject>Epithelial cells</subject><subject>Excretion</subject><subject>Extracellular</subject><subject>Filaments</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Glands</subject><subject>Hepatopancreas</subject><subject>Homology</subject><subject>Hydrogen</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Mantle</subject><subject>Nitrogen</subject><subject>Oceanography</subject><subject>Photosynthates</subject><subject>Salivary gland</subject><subject>Salivary glands</subject><subject>Seawater</subject><subject>Symbiosis</subject><subject>Transcription</subject><subject>Tridacna squamosa</subject><subject>Tropical climate</subject><subject>Upper mantle</subject><subject>Zooxanthellae</subject><issn>0722-4028</issn><issn>1432-0975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1DAUhi1EJYaWF2BliU0RCpzYzsXsqorSkUbtgmFtOb5kXCV2ajtSeQPWfaA-TJ-EpIPEjtXRufzfr6MfofclfC4Bmi8JgNK2AAIFlByagr9Cm5JRUgBvqtdoAw0hBQPSvkFvU7oDgKridIOe9geD7TBno3HvpM9YDXLE5_votFRe4nQ_yzEk-RE7r6KRySTsXY4yGyy7FOKUXfBYeo3nKZp-HpZNwnnBmodlkNK6DhZLfAhjGEK_Nj-2F7vtDT6__vSV3NzS59-PWIUF6tMUYjZxdXthqGy8024esZ6j8z0eXH_IKzqkOZozdGLlkMy7v_UU_bz6tr-8Lna337eXF7tCEcp4wZWlpCVaEW4taUjD2rrmXFeW1UBJp7TulGSmrjoOrJamsbWWlaoqJtuuJfQUfThypxjuZ5OyuAtz9IulILRtSlbWZL0ixysVQ0rRWDFFN8r4S5Qg1pzEMSex5CRechJ8EdGjKE3rgyb-Q_9H9Qcv6Zlc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ip, Yuen K.</creator><creator>Hiong, Kum C.</creator><creator>Teng, Joey H. Q.</creator><creator>Boo, Mel V.</creator><creator>Choo, Celine Y. L.</creator><creator>Wong, Wai P.</creator><creator>Chew, Shit F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></search><sort><creationdate>20200401</creationdate><title>The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure</title><author>Ip, Yuen K. ; Hiong, Kum C. ; Teng, Joey H. Q. ; Boo, Mel V. ; Choo, Celine Y. L. ; Wong, Wai P. ; Chew, Shit F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-9cf3282dc29ff2727486699d5f46032bcddbca4e65b9046ae7f6da5c554a8b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Acinar cells</topic><topic>Algae</topic><topic>Amino acids</topic><topic>Ammonium nitrogen</topic><topic>Aquatic animals</topic><topic>Aquatic plants</topic><topic>Biomedical and Life Sciences</topic><topic>Clams</topic><topic>Complementary DNA</topic><topic>Corals</topic><topic>Darkness</topic><topic>Dinoflagellates</topic><topic>DNA</topic><topic>Epithelial cells</topic><topic>Excretion</topic><topic>Extracellular</topic><topic>Filaments</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Glands</topic><topic>Hepatopancreas</topic><topic>Homology</topic><topic>Hydrogen</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Mantle</topic><topic>Nitrogen</topic><topic>Oceanography</topic><topic>Photosynthates</topic><topic>Salivary gland</topic><topic>Salivary glands</topic><topic>Seawater</topic><topic>Symbiosis</topic><topic>Transcription</topic><topic>Tridacna squamosa</topic><topic>Tropical climate</topic><topic>Upper mantle</topic><topic>Zooxanthellae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Yuen K.</creatorcontrib><creatorcontrib>Hiong, Kum C.</creatorcontrib><creatorcontrib>Teng, Joey H. Q.</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Choo, Celine Y. L.</creatorcontrib><creatorcontrib>Wong, Wai P.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Coral reefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Yuen K.</au><au>Hiong, Kum C.</au><au>Teng, Joey H. Q.</au><au>Boo, Mel V.</au><au>Choo, Celine Y. L.</au><au>Wong, Wai P.</au><au>Chew, Shit F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure</atitle><jtitle>Coral reefs</jtitle><stitle>Coral Reefs</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><spage>451</spage><epage>465</epage><pages>451-465</pages><issn>0722-4028</issn><eissn>1432-0975</eissn><abstract>Giant clams flourish in nutrient-poor waters of tropical Indo-Pacific because they live in symbiosis with extracellular dinoflagellates (zooxanthellae) and receive photosynthates from them. Zooxanthellae have no access to the ambient seawater and are nitrogen-deficient; hence, they need to obtain nitrogen from the host clam. Unlike algae and plants, aquatic animals generally absorb little nitrate (NO 3 − ) from the environment. Here, we report for the first time that the fluted giant clam, Tridacna squamosa , absorbed NO 3 − from the external seawater at a rate faster in light than in darkness. In addition, its ctenidium (gill) expressed a homolog of SIALIN (SIALIN-like), which is known to function as an electrogenic H + :2NO 3 − cotransporter and facilitate NO 3 − excretion in acinar cells of human salivary glands. The complete cDNA coding sequence of SIALIN-like of T. squamosa , which was derived from the host clam, consisted of 1905 bp and encoded for 634 amino acids of 69.6 kDa. It had the strongest expression in the ctenidium and weak expression in the colorful outer mantle and hepatopancreas. Being localized in the apical membrane of the epithelial cells at the tips of ctenidial filaments of T. squamosa , SIALIN-like was well positioned to absorb NO 3 − from the ambient seawater. Furthermore, the transcript level and protein abundance of SIALIN-like /SIALIN-like increased significantly in the ctenidium during 12 h of light exposure, denoting its possible role in light-enhanced NO 3 − absorption in T. squamosa . While scleractinian corals are known to absorb exogenous NO 3 − to benefit their intracellular zooxanthellae, they display light-independent NO 3 − absorption. Hence, the ability of T. squamosa to conduct light-enhanced NO 3 − absorption could be related to the extracellular location of its zooxanthellae.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00338-020-01907-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0722-4028
ispartof Coral reefs, 2020-04, Vol.39 (2), p.451-465
issn 0722-4028
1432-0975
language eng
recordid cdi_proquest_journals_2387141622
source SpringerLink Journals - AutoHoldings
subjects Absorption
Acinar cells
Algae
Amino acids
Ammonium nitrogen
Aquatic animals
Aquatic plants
Biomedical and Life Sciences
Clams
Complementary DNA
Corals
Darkness
Dinoflagellates
DNA
Epithelial cells
Excretion
Extracellular
Filaments
Freshwater & Marine Ecology
Glands
Hepatopancreas
Homology
Hydrogen
Life Sciences
Light
Mantle
Nitrogen
Oceanography
Photosynthates
Salivary gland
Salivary glands
Seawater
Symbiosis
Transcription
Tridacna squamosa
Tropical climate
Upper mantle
Zooxanthellae
title The fluted giant clam (Tridacna squamosa) increases nitrate absorption and upregulates the expression of a homolog of SIALIN (H+:2NO3− cotransporter) in the ctenidium during light exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fluted%20giant%20clam%20(Tridacna%20squamosa)%20increases%20nitrate%20absorption%20and%20upregulates%20the%20expression%20of%20a%20homolog%20of%20SIALIN%20(H+:2NO3%E2%88%92%20cotransporter)%20in%20the%20ctenidium%20during%20light%20exposure&rft.jtitle=Coral%20reefs&rft.au=Ip,%20Yuen%20K.&rft.date=2020-04-01&rft.volume=39&rft.issue=2&rft.spage=451&rft.epage=465&rft.pages=451-465&rft.issn=0722-4028&rft.eissn=1432-0975&rft_id=info:doi/10.1007/s00338-020-01907-9&rft_dat=%3Cproquest_cross%3E2387141622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387141622&rft_id=info:pmid/&rfr_iscdi=true