A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes

This article presents a lightweight visual place recognition approach, capable of achieving high performance with low computational cost, and feasible for mobile robotics under significant viewpoint and appearance changes. Results on several benchmark datasets confirm an average boost of 13% in accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2020-04, Vol.36 (2), p.561-569
Hauptverfasser: Khaliq, Ahmad, Ehsan, Shoaib, Chen, Zetao, Milford, Michael, McDonald-Maier, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 2
container_start_page 561
container_title IEEE transactions on robotics
container_volume 36
creator Khaliq, Ahmad
Ehsan, Shoaib
Chen, Zetao
Milford, Michael
McDonald-Maier, Klaus
description This article presents a lightweight visual place recognition approach, capable of achieving high performance with low computational cost, and feasible for mobile robotics under significant viewpoint and appearance changes. Results on several benchmark datasets confirm an average boost of 13% in accuracy, and 12 x average speedup relative to state-of-the-art methods.
doi_str_mv 10.1109/TRO.2019.2956352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387070783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8944012</ieee_id><sourcerecordid>2387070783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bbb1a9cdd6b94b509961e0f8f03c94c390ae3bf284487ead43c5b9ad1a4f9b93</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4soOKfvgi8BnzsvP9o1j6OoE8Y25vQ1pGnSRWo6k47hf2_Khhzc3cP3-73jkyT3GCYYA3_ablYTAphPCM9ympGLZIQ5wymwvLiMe5aRlAIvrpObEL4ACONAR0k_Q_OutaG3Cn3acJAtWrdSabTRqmuc7W3n0Gy_951UO_QRrGvQwja7_qiHjsrlMiDTefRuo9pYJV0fg_Rx3dm4SVcPbi29dDG03EnX6HCbXBnZBn13nuNk-_K8LefpYvX6Vs4WqaKU9mlVVVhyVdd5xVmVAec51mAKA1RxpigHqWllSMFYMdWyZlRlFZc1lszwitNx8niKjd__HHToxVd38C5eFIQWU4hV0KiCk0r5LgSvjdh7-y39r8AgBrQiohUDWnFGGy0PJ4vVWv_LC84YYEL_ACF3dio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387070783</pqid></control><display><type>article</type><title>A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes</title><source>IEEE Electronic Library (IEL)</source><creator>Khaliq, Ahmad ; Ehsan, Shoaib ; Chen, Zetao ; Milford, Michael ; McDonald-Maier, Klaus</creator><creatorcontrib>Khaliq, Ahmad ; Ehsan, Shoaib ; Chen, Zetao ; Milford, Michael ; McDonald-Maier, Klaus</creatorcontrib><description>This article presents a lightweight visual place recognition approach, capable of achieving high performance with low computational cost, and feasible for mobile robotics under significant viewpoint and appearance changes. Results on several benchmark datasets confirm an average boost of 13% in accuracy, and 12 x average speedup relative to state-of-the-art methods.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2956352</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolutional neural network (CNN) ; Encoding ; feature encoding ; Feature extraction ; Image recognition ; Image retrieval ; Lightweight ; Recognition ; robot localization ; Robotics ; Robots ; Task analysis ; vector of locally aggregated descriptors (VLADs) ; visual place recognition (VPR) ; Visualization</subject><ispartof>IEEE transactions on robotics, 2020-04, Vol.36 (2), p.561-569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bbb1a9cdd6b94b509961e0f8f03c94c390ae3bf284487ead43c5b9ad1a4f9b93</citedby><cites>FETCH-LOGICAL-c333t-bbb1a9cdd6b94b509961e0f8f03c94c390ae3bf284487ead43c5b9ad1a4f9b93</cites><orcidid>0000-0002-7878-9369 ; 0000-0002-5162-1793 ; 0000-0001-9631-1898 ; 0000-0002-6412-8519 ; 0000-0002-5596-5008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8944012$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Khaliq, Ahmad</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>Chen, Zetao</creatorcontrib><creatorcontrib>Milford, Michael</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus</creatorcontrib><title>A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article presents a lightweight visual place recognition approach, capable of achieving high performance with low computational cost, and feasible for mobile robotics under significant viewpoint and appearance changes. Results on several benchmark datasets confirm an average boost of 13% in accuracy, and 12 x average speedup relative to state-of-the-art methods.</description><subject>Convolutional neural network (CNN)</subject><subject>Encoding</subject><subject>feature encoding</subject><subject>Feature extraction</subject><subject>Image recognition</subject><subject>Image retrieval</subject><subject>Lightweight</subject><subject>Recognition</subject><subject>robot localization</subject><subject>Robotics</subject><subject>Robots</subject><subject>Task analysis</subject><subject>vector of locally aggregated descriptors (VLADs)</subject><subject>visual place recognition (VPR)</subject><subject>Visualization</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4soOKfvgi8BnzsvP9o1j6OoE8Y25vQ1pGnSRWo6k47hf2_Khhzc3cP3-73jkyT3GCYYA3_ablYTAphPCM9ympGLZIQ5wymwvLiMe5aRlAIvrpObEL4ACONAR0k_Q_OutaG3Cn3acJAtWrdSabTRqmuc7W3n0Gy_951UO_QRrGvQwja7_qiHjsrlMiDTefRuo9pYJV0fg_Rx3dm4SVcPbi29dDG03EnX6HCbXBnZBn13nuNk-_K8LefpYvX6Vs4WqaKU9mlVVVhyVdd5xVmVAec51mAKA1RxpigHqWllSMFYMdWyZlRlFZc1lszwitNx8niKjd__HHToxVd38C5eFIQWU4hV0KiCk0r5LgSvjdh7-y39r8AgBrQiohUDWnFGGy0PJ4vVWv_LC84YYEL_ACF3dio</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Khaliq, Ahmad</creator><creator>Ehsan, Shoaib</creator><creator>Chen, Zetao</creator><creator>Milford, Michael</creator><creator>McDonald-Maier, Klaus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7878-9369</orcidid><orcidid>https://orcid.org/0000-0002-5162-1793</orcidid><orcidid>https://orcid.org/0000-0001-9631-1898</orcidid><orcidid>https://orcid.org/0000-0002-6412-8519</orcidid><orcidid>https://orcid.org/0000-0002-5596-5008</orcidid></search><sort><creationdate>202004</creationdate><title>A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes</title><author>Khaliq, Ahmad ; Ehsan, Shoaib ; Chen, Zetao ; Milford, Michael ; McDonald-Maier, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bbb1a9cdd6b94b509961e0f8f03c94c390ae3bf284487ead43c5b9ad1a4f9b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convolutional neural network (CNN)</topic><topic>Encoding</topic><topic>feature encoding</topic><topic>Feature extraction</topic><topic>Image recognition</topic><topic>Image retrieval</topic><topic>Lightweight</topic><topic>Recognition</topic><topic>robot localization</topic><topic>Robotics</topic><topic>Robots</topic><topic>Task analysis</topic><topic>vector of locally aggregated descriptors (VLADs)</topic><topic>visual place recognition (VPR)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaliq, Ahmad</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>Chen, Zetao</creatorcontrib><creatorcontrib>Milford, Michael</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaliq, Ahmad</au><au>Ehsan, Shoaib</au><au>Chen, Zetao</au><au>Milford, Michael</au><au>McDonald-Maier, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2020-04</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>561</spage><epage>569</epage><pages>561-569</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article presents a lightweight visual place recognition approach, capable of achieving high performance with low computational cost, and feasible for mobile robotics under significant viewpoint and appearance changes. Results on several benchmark datasets confirm an average boost of 13% in accuracy, and 12 x average speedup relative to state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2956352</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7878-9369</orcidid><orcidid>https://orcid.org/0000-0002-5162-1793</orcidid><orcidid>https://orcid.org/0000-0001-9631-1898</orcidid><orcidid>https://orcid.org/0000-0002-6412-8519</orcidid><orcidid>https://orcid.org/0000-0002-5596-5008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2020-04, Vol.36 (2), p.561-569
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2387070783
source IEEE Electronic Library (IEL)
subjects Convolutional neural network (CNN)
Encoding
feature encoding
Feature extraction
Image recognition
Image retrieval
Lightweight
Recognition
robot localization
Robotics
Robots
Task analysis
vector of locally aggregated descriptors (VLADs)
visual place recognition (VPR)
Visualization
title A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Holistic%20Visual%20Place%20Recognition%20Approach%20Using%20Lightweight%20CNNs%20for%20Significant%20ViewPoint%20and%20Appearance%20Changes&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Khaliq,%20Ahmad&rft.date=2020-04&rft.volume=36&rft.issue=2&rft.spage=561&rft.epage=569&rft.pages=561-569&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2956352&rft_dat=%3Cproquest_cross%3E2387070783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387070783&rft_id=info:pmid/&rft_ieee_id=8944012&rfr_iscdi=true