Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell
Summary An ultra‐low‐platinum catalyst based on finely dispersed platinum (Pt) deposited on a highly porous complex microporous layer was investigated as a candidate of durable anode catalyst for hydrogen oxidation reaction (HOR) in proton exchange membrane fuel cells. Etching of teflonated and nitr...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2020-05, Vol.44 (6), p.4641-4651 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4651 |
---|---|
container_issue | 6 |
container_start_page | 4641 |
container_title | International journal of energy research |
container_volume | 44 |
creator | Ostroverkh, Anna Dubau, Martin Kúš, Peter Haviar, Stanislav Václavů, Michal Šmíd, Břetislav Fiala, Roman Yakovlev, Yurii Ostroverkh, Yevhenii Johánek, Viktor |
description | Summary
An ultra‐low‐platinum catalyst based on finely dispersed platinum (Pt) deposited on a highly porous complex microporous layer was investigated as a candidate of durable anode catalyst for hydrogen oxidation reaction (HOR) in proton exchange membrane fuel cells. Etching of teflonated and nitridized base carbon substrate in oxygen plasma and simultaneous deposition of cerium oxide were applied to increase active surface area and electrochemical activity of the platinum nanocatalyst. Ultra‐low loadings of Pt (between 0.85 and 8.5 μg cm−2) deposited by magnetron sputtering on this substrate were assembled with Nafion 212 membrane and commercially available Pt/C cathodes (300‐400 μg cm−2 Pt). Such membrane electrode assembly (MEA) with extremely low Pt content at anode can deliver high output power densities, reaching 0.95 W cm−2 or 0.65 W cm−2 with only 1.7 μg cm−2 of Pt, using H2 as fuel and pure O2 or air as an oxidant, respectively. Although electrocatalysts with highly dispersed active metals are known to often suffer from irreversible degradation, the above MEAs proved to be very stable when the cell was subjected to a durability test under heavy duty conditions of on/off cycling. The system with lower Pt content is more prone to water flooding which can, however, be eliminated by maintaining better control over the fuel humidity. Average decay of the cell voltage less than 50 μV h−1 was obtained in the cycling regime, while excellent stability |
doi_str_mv | 10.1002/er.5245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386948778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386948778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4255-da1fe2b6927b4cb812544ca6a71ed0dc8a46634572cc89c047a10ff8c17f05193</originalsourceid><addsrcrecordid>eNp10F9LwzAQAPAgCs4pfoWADz5IZ5KmTfsoc_6BgSAKewtpetk60mSmLVvf_Ah-Rj-JnfPVlzu4-3F3HEKXlEwoIewWwiRhPDlCI0ryPKKUL47RiMRpHOVELE7RWdOsCRl6VIyQve-CKizgzrZBfX9-Wb8d4saqtnJdjSvvfA1hKJkAgJXzJWCtWmX7psXGB7zqy-CX4PAm-NY7DDu9Um4JuIa6CMoBNh1YrMHac3RilG3g4i-P0fvD7G36FM1fHp-nd_NIc5YkUamoAVakORMF10VGWcK5VqkSFEpS6kzxNI15IpjWWa4JF4oSYzJNhSEJzeMxujrMHU766KBp5dp3wQ0rJYuzNOeZENmgrg9KB980AYzchKpWoZeUyP0rJQS5f-Ugbw5yW1no_2Ny9vqrfwAtUXhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386948778</pqid></control><display><type>article</type><title>Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ostroverkh, Anna ; Dubau, Martin ; Kúš, Peter ; Haviar, Stanislav ; Václavů, Michal ; Šmíd, Břetislav ; Fiala, Roman ; Yakovlev, Yurii ; Ostroverkh, Yevhenii ; Johánek, Viktor</creator><creatorcontrib>Ostroverkh, Anna ; Dubau, Martin ; Kúš, Peter ; Haviar, Stanislav ; Václavů, Michal ; Šmíd, Břetislav ; Fiala, Roman ; Yakovlev, Yurii ; Ostroverkh, Yevhenii ; Johánek, Viktor</creatorcontrib><description>Summary
An ultra‐low‐platinum catalyst based on finely dispersed platinum (Pt) deposited on a highly porous complex microporous layer was investigated as a candidate of durable anode catalyst for hydrogen oxidation reaction (HOR) in proton exchange membrane fuel cells. Etching of teflonated and nitridized base carbon substrate in oxygen plasma and simultaneous deposition of cerium oxide were applied to increase active surface area and electrochemical activity of the platinum nanocatalyst. Ultra‐low loadings of Pt (between 0.85 and 8.5 μg cm−2) deposited by magnetron sputtering on this substrate were assembled with Nafion 212 membrane and commercially available Pt/C cathodes (300‐400 μg cm−2 Pt). Such membrane electrode assembly (MEA) with extremely low Pt content at anode can deliver high output power densities, reaching 0.95 W cm−2 or 0.65 W cm−2 with only 1.7 μg cm−2 of Pt, using H2 as fuel and pure O2 or air as an oxidant, respectively. Although electrocatalysts with highly dispersed active metals are known to often suffer from irreversible degradation, the above MEAs proved to be very stable when the cell was subjected to a durability test under heavy duty conditions of on/off cycling. The system with lower Pt content is more prone to water flooding which can, however, be eliminated by maintaining better control over the fuel humidity. Average decay of the cell voltage less than 50 μV h−1 was obtained in the cycling regime, while excellent stability <10 μV h−1 is achievable under the static load of 0.4 A cm−2.
Ionomer‐free Pt/ceria/CNx‐based catalyst containing extremely low amounts of platinum proved to be very durable for HOR in low‐temperature proton exchange membrane fuel cells. This novel nanostructured material, prepared by magnetron sputtering, allows reduction of Pt load down to μg cm−2 range without compromising fuel cell performance in terms of both power density and durability.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5245</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Anodes ; Anodizing ; Carbon sources ; Catalysts ; Cathodes ; Cerium ; Cerium oxides ; Cycles ; Dispersion ; Durability ; Electrocatalysts ; Electrochemistry ; Electrodes ; Etching ; Flooding ; Fuel cells ; Fuel technology ; Heavy metals ; hydrogen oxidation reaction ; Ionomers ; ionomer‐free ; low platinum catalyst ; Magnetron sputtering ; Membranes ; Metals ; Oxidants ; Oxidation ; Oxidizing agents ; Oxygen plasma ; Platinum ; proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Protons ; Stability ; Static loads ; Substrates</subject><ispartof>International journal of energy research, 2020-05, Vol.44 (6), p.4641-4651</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4255-da1fe2b6927b4cb812544ca6a71ed0dc8a46634572cc89c047a10ff8c17f05193</citedby><cites>FETCH-LOGICAL-c4255-da1fe2b6927b4cb812544ca6a71ed0dc8a46634572cc89c047a10ff8c17f05193</cites><orcidid>0000-0002-8833-5870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ostroverkh, Anna</creatorcontrib><creatorcontrib>Dubau, Martin</creatorcontrib><creatorcontrib>Kúš, Peter</creatorcontrib><creatorcontrib>Haviar, Stanislav</creatorcontrib><creatorcontrib>Václavů, Michal</creatorcontrib><creatorcontrib>Šmíd, Břetislav</creatorcontrib><creatorcontrib>Fiala, Roman</creatorcontrib><creatorcontrib>Yakovlev, Yurii</creatorcontrib><creatorcontrib>Ostroverkh, Yevhenii</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><title>Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell</title><title>International journal of energy research</title><description>Summary
An ultra‐low‐platinum catalyst based on finely dispersed platinum (Pt) deposited on a highly porous complex microporous layer was investigated as a candidate of durable anode catalyst for hydrogen oxidation reaction (HOR) in proton exchange membrane fuel cells. Etching of teflonated and nitridized base carbon substrate in oxygen plasma and simultaneous deposition of cerium oxide were applied to increase active surface area and electrochemical activity of the platinum nanocatalyst. Ultra‐low loadings of Pt (between 0.85 and 8.5 μg cm−2) deposited by magnetron sputtering on this substrate were assembled with Nafion 212 membrane and commercially available Pt/C cathodes (300‐400 μg cm−2 Pt). Such membrane electrode assembly (MEA) with extremely low Pt content at anode can deliver high output power densities, reaching 0.95 W cm−2 or 0.65 W cm−2 with only 1.7 μg cm−2 of Pt, using H2 as fuel and pure O2 or air as an oxidant, respectively. Although electrocatalysts with highly dispersed active metals are known to often suffer from irreversible degradation, the above MEAs proved to be very stable when the cell was subjected to a durability test under heavy duty conditions of on/off cycling. The system with lower Pt content is more prone to water flooding which can, however, be eliminated by maintaining better control over the fuel humidity. Average decay of the cell voltage less than 50 μV h−1 was obtained in the cycling regime, while excellent stability <10 μV h−1 is achievable under the static load of 0.4 A cm−2.
Ionomer‐free Pt/ceria/CNx‐based catalyst containing extremely low amounts of platinum proved to be very durable for HOR in low‐temperature proton exchange membrane fuel cells. This novel nanostructured material, prepared by magnetron sputtering, allows reduction of Pt load down to μg cm−2 range without compromising fuel cell performance in terms of both power density and durability.</description><subject>Anodes</subject><subject>Anodizing</subject><subject>Carbon sources</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Cycles</subject><subject>Dispersion</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Etching</subject><subject>Flooding</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heavy metals</subject><subject>hydrogen oxidation reaction</subject><subject>Ionomers</subject><subject>ionomer‐free</subject><subject>low platinum catalyst</subject><subject>Magnetron sputtering</subject><subject>Membranes</subject><subject>Metals</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Oxygen plasma</subject><subject>Platinum</subject><subject>proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Stability</subject><subject>Static loads</subject><subject>Substrates</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10F9LwzAQAPAgCs4pfoWADz5IZ5KmTfsoc_6BgSAKewtpetk60mSmLVvf_Ah-Rj-JnfPVlzu4-3F3HEKXlEwoIewWwiRhPDlCI0ryPKKUL47RiMRpHOVELE7RWdOsCRl6VIyQve-CKizgzrZBfX9-Wb8d4saqtnJdjSvvfA1hKJkAgJXzJWCtWmX7psXGB7zqy-CX4PAm-NY7DDu9Um4JuIa6CMoBNh1YrMHac3RilG3g4i-P0fvD7G36FM1fHp-nd_NIc5YkUamoAVakORMF10VGWcK5VqkSFEpS6kzxNI15IpjWWa4JF4oSYzJNhSEJzeMxujrMHU766KBp5dp3wQ0rJYuzNOeZENmgrg9KB980AYzchKpWoZeUyP0rJQS5f-Ugbw5yW1no_2Ny9vqrfwAtUXhw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Ostroverkh, Anna</creator><creator>Dubau, Martin</creator><creator>Kúš, Peter</creator><creator>Haviar, Stanislav</creator><creator>Václavů, Michal</creator><creator>Šmíd, Břetislav</creator><creator>Fiala, Roman</creator><creator>Yakovlev, Yurii</creator><creator>Ostroverkh, Yevhenii</creator><creator>Johánek, Viktor</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8833-5870</orcidid></search><sort><creationdate>202005</creationdate><title>Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell</title><author>Ostroverkh, Anna ; Dubau, Martin ; Kúš, Peter ; Haviar, Stanislav ; Václavů, Michal ; Šmíd, Břetislav ; Fiala, Roman ; Yakovlev, Yurii ; Ostroverkh, Yevhenii ; Johánek, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4255-da1fe2b6927b4cb812544ca6a71ed0dc8a46634572cc89c047a10ff8c17f05193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Anodizing</topic><topic>Carbon sources</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Cycles</topic><topic>Dispersion</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Etching</topic><topic>Flooding</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heavy metals</topic><topic>hydrogen oxidation reaction</topic><topic>Ionomers</topic><topic>ionomer‐free</topic><topic>low platinum catalyst</topic><topic>Magnetron sputtering</topic><topic>Membranes</topic><topic>Metals</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Oxygen plasma</topic><topic>Platinum</topic><topic>proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Stability</topic><topic>Static loads</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostroverkh, Anna</creatorcontrib><creatorcontrib>Dubau, Martin</creatorcontrib><creatorcontrib>Kúš, Peter</creatorcontrib><creatorcontrib>Haviar, Stanislav</creatorcontrib><creatorcontrib>Václavů, Michal</creatorcontrib><creatorcontrib>Šmíd, Břetislav</creatorcontrib><creatorcontrib>Fiala, Roman</creatorcontrib><creatorcontrib>Yakovlev, Yurii</creatorcontrib><creatorcontrib>Ostroverkh, Yevhenii</creatorcontrib><creatorcontrib>Johánek, Viktor</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostroverkh, Anna</au><au>Dubau, Martin</au><au>Kúš, Peter</au><au>Haviar, Stanislav</au><au>Václavů, Michal</au><au>Šmíd, Břetislav</au><au>Fiala, Roman</au><au>Yakovlev, Yurii</au><au>Ostroverkh, Yevhenii</au><au>Johánek, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell</atitle><jtitle>International journal of energy research</jtitle><date>2020-05</date><risdate>2020</risdate><volume>44</volume><issue>6</issue><spage>4641</spage><epage>4651</epage><pages>4641-4651</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
An ultra‐low‐platinum catalyst based on finely dispersed platinum (Pt) deposited on a highly porous complex microporous layer was investigated as a candidate of durable anode catalyst for hydrogen oxidation reaction (HOR) in proton exchange membrane fuel cells. Etching of teflonated and nitridized base carbon substrate in oxygen plasma and simultaneous deposition of cerium oxide were applied to increase active surface area and electrochemical activity of the platinum nanocatalyst. Ultra‐low loadings of Pt (between 0.85 and 8.5 μg cm−2) deposited by magnetron sputtering on this substrate were assembled with Nafion 212 membrane and commercially available Pt/C cathodes (300‐400 μg cm−2 Pt). Such membrane electrode assembly (MEA) with extremely low Pt content at anode can deliver high output power densities, reaching 0.95 W cm−2 or 0.65 W cm−2 with only 1.7 μg cm−2 of Pt, using H2 as fuel and pure O2 or air as an oxidant, respectively. Although electrocatalysts with highly dispersed active metals are known to often suffer from irreversible degradation, the above MEAs proved to be very stable when the cell was subjected to a durability test under heavy duty conditions of on/off cycling. The system with lower Pt content is more prone to water flooding which can, however, be eliminated by maintaining better control over the fuel humidity. Average decay of the cell voltage less than 50 μV h−1 was obtained in the cycling regime, while excellent stability <10 μV h−1 is achievable under the static load of 0.4 A cm−2.
Ionomer‐free Pt/ceria/CNx‐based catalyst containing extremely low amounts of platinum proved to be very durable for HOR in low‐temperature proton exchange membrane fuel cells. This novel nanostructured material, prepared by magnetron sputtering, allows reduction of Pt load down to μg cm−2 range without compromising fuel cell performance in terms of both power density and durability.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.5245</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8833-5870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2020-05, Vol.44 (6), p.4641-4651 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2386948778 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Anodizing Carbon sources Catalysts Cathodes Cerium Cerium oxides Cycles Dispersion Durability Electrocatalysts Electrochemistry Electrodes Etching Flooding Fuel cells Fuel technology Heavy metals hydrogen oxidation reaction Ionomers ionomer‐free low platinum catalyst Magnetron sputtering Membranes Metals Oxidants Oxidation Oxidizing agents Oxygen plasma Platinum proton exchange membrane fuel cell Proton exchange membrane fuel cells Protons Stability Static loads Substrates |
title | Durable ultra‐low‐platinum ionomer‐free anode catalyst for hydrogen proton exchange membrane fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Durable%20ultra%E2%80%90low%E2%80%90platinum%20ionomer%E2%80%90free%20anode%20catalyst%20for%20hydrogen%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ostroverkh,%20Anna&rft.date=2020-05&rft.volume=44&rft.issue=6&rft.spage=4641&rft.epage=4651&rft.pages=4641-4651&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5245&rft_dat=%3Cproquest_cross%3E2386948778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386948778&rft_id=info:pmid/&rfr_iscdi=true |