Low-Complexity DOA Estimation Based on Constraint Solution Space

The Weighted Subspace Fitting (WSF) algorithm is one of the universal algorithms in Direction-Of-Arrival (DOA) estimation, which is of high accuracy. However, it involves the multi-dimensional nonlinear optimization problem, and the computational complexity is usually high. In this paper, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-04, Vol.111 (4), p.2435-2447
Hauptverfasser: Li, ShiBao, Sun, Li, Chen, HaiHua, Liu, JianHang, Huang, TingPei, Zhao, DaYin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2447
container_issue 4
container_start_page 2435
container_title Wireless personal communications
container_volume 111
creator Li, ShiBao
Sun, Li
Chen, HaiHua
Liu, JianHang
Huang, TingPei
Zhao, DaYin
description The Weighted Subspace Fitting (WSF) algorithm is one of the universal algorithms in Direction-Of-Arrival (DOA) estimation, which is of high accuracy. However, it involves the multi-dimensional nonlinear optimization problem, and the computational complexity is usually high. In this paper, we propose a low-complexity DOA estimation algorithm based on constraint solution space. Firstly, we use ESPRIT algorithm to limit the solution space around the best solution and reduce the computational range. Then, we find the best solution in a smaller solution space constraint by Cramr-Rao Bound (CRB), and seek repeatedly until reaching the global optimal solution of WSF algorithm by using the space of the best solution. By limiting the searching process in smaller solution space, this strategy controls the direction of convergence and reduces computational complexity. The experimental results show that this algorithm needs less iterations when the same DOA accuracy is required, and the computational complexity is apparently reduced.
doi_str_mv 10.1007/s11277-019-06994-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386947207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386947207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8e56de1da8932b753470e6403b4a0d5d9ce9e285b15c4cdd3be70c21ea42ccee3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkYzebm7XWDyj0UAVvIZudypZ2syZbtP_e2BW8eZqBeZ8Z5iHkksE1A1A3kTGuFAWmKRRaS1oekRHLFaelkG_HZASaa1pwxk_JWYxrgIRpPiK3c_9Jp37bbfCr6ffZ_WKSzWLfbG3f-Da7sxHrLDVT38Y-2Kbts6Xf7A7DZWcdnpOTld1EvPitY_L6MHuZPtH54vF5OplTxxX0tMS8qJHVttSCVyoXUgEWEkQlLdR5rR1q5GVesdxJV9eiQgWOM7SSO4coxuRq2NsF_7HD2Ju134U2nTRclIWWioNKKT6kXPAxBlyZLqRfwt4wMD-mzGDKJFPmYMqUCRIDFFO4fcfwt_of6hva_2t2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386947207</pqid></control><display><type>article</type><title>Low-Complexity DOA Estimation Based on Constraint Solution Space</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, ShiBao ; Sun, Li ; Chen, HaiHua ; Liu, JianHang ; Huang, TingPei ; Zhao, DaYin</creator><creatorcontrib>Li, ShiBao ; Sun, Li ; Chen, HaiHua ; Liu, JianHang ; Huang, TingPei ; Zhao, DaYin</creatorcontrib><description>The Weighted Subspace Fitting (WSF) algorithm is one of the universal algorithms in Direction-Of-Arrival (DOA) estimation, which is of high accuracy. However, it involves the multi-dimensional nonlinear optimization problem, and the computational complexity is usually high. In this paper, we propose a low-complexity DOA estimation algorithm based on constraint solution space. Firstly, we use ESPRIT algorithm to limit the solution space around the best solution and reduce the computational range. Then, we find the best solution in a smaller solution space constraint by Cramr-Rao Bound (CRB), and seek repeatedly until reaching the global optimal solution of WSF algorithm by using the space of the best solution. By limiting the searching process in smaller solution space, this strategy controls the direction of convergence and reduces computational complexity. The experimental results show that this algorithm needs less iterations when the same DOA accuracy is required, and the computational complexity is apparently reduced.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-019-06994-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Complexity ; Computer Communication Networks ; Direction of arrival ; Engineering ; Networks ; Optimization ; Signal,Image and Speech Processing ; Solution space</subject><ispartof>Wireless personal communications, 2020-04, Vol.111 (4), p.2435-2447</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8e56de1da8932b753470e6403b4a0d5d9ce9e285b15c4cdd3be70c21ea42ccee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-019-06994-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-019-06994-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, ShiBao</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Chen, HaiHua</creatorcontrib><creatorcontrib>Liu, JianHang</creatorcontrib><creatorcontrib>Huang, TingPei</creatorcontrib><creatorcontrib>Zhao, DaYin</creatorcontrib><title>Low-Complexity DOA Estimation Based on Constraint Solution Space</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>The Weighted Subspace Fitting (WSF) algorithm is one of the universal algorithms in Direction-Of-Arrival (DOA) estimation, which is of high accuracy. However, it involves the multi-dimensional nonlinear optimization problem, and the computational complexity is usually high. In this paper, we propose a low-complexity DOA estimation algorithm based on constraint solution space. Firstly, we use ESPRIT algorithm to limit the solution space around the best solution and reduce the computational range. Then, we find the best solution in a smaller solution space constraint by Cramr-Rao Bound (CRB), and seek repeatedly until reaching the global optimal solution of WSF algorithm by using the space of the best solution. By limiting the searching process in smaller solution space, this strategy controls the direction of convergence and reduces computational complexity. The experimental results show that this algorithm needs less iterations when the same DOA accuracy is required, and the computational complexity is apparently reduced.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Direction of arrival</subject><subject>Engineering</subject><subject>Networks</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Solution space</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkYzebm7XWDyj0UAVvIZudypZ2syZbtP_e2BW8eZqBeZ8Z5iHkksE1A1A3kTGuFAWmKRRaS1oekRHLFaelkG_HZASaa1pwxk_JWYxrgIRpPiK3c_9Jp37bbfCr6ffZ_WKSzWLfbG3f-Da7sxHrLDVT38Y-2Kbts6Xf7A7DZWcdnpOTld1EvPitY_L6MHuZPtH54vF5OplTxxX0tMS8qJHVttSCVyoXUgEWEkQlLdR5rR1q5GVesdxJV9eiQgWOM7SSO4coxuRq2NsF_7HD2Ju134U2nTRclIWWioNKKT6kXPAxBlyZLqRfwt4wMD-mzGDKJFPmYMqUCRIDFFO4fcfwt_of6hva_2t2</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, ShiBao</creator><creator>Sun, Li</creator><creator>Chen, HaiHua</creator><creator>Liu, JianHang</creator><creator>Huang, TingPei</creator><creator>Zhao, DaYin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Low-Complexity DOA Estimation Based on Constraint Solution Space</title><author>Li, ShiBao ; Sun, Li ; Chen, HaiHua ; Liu, JianHang ; Huang, TingPei ; Zhao, DaYin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8e56de1da8932b753470e6403b4a0d5d9ce9e285b15c4cdd3be70c21ea42ccee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Direction of arrival</topic><topic>Engineering</topic><topic>Networks</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Solution space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, ShiBao</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Chen, HaiHua</creatorcontrib><creatorcontrib>Liu, JianHang</creatorcontrib><creatorcontrib>Huang, TingPei</creatorcontrib><creatorcontrib>Zhao, DaYin</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, ShiBao</au><au>Sun, Li</au><au>Chen, HaiHua</au><au>Liu, JianHang</au><au>Huang, TingPei</au><au>Zhao, DaYin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Complexity DOA Estimation Based on Constraint Solution Space</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>111</volume><issue>4</issue><spage>2435</spage><epage>2447</epage><pages>2435-2447</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>The Weighted Subspace Fitting (WSF) algorithm is one of the universal algorithms in Direction-Of-Arrival (DOA) estimation, which is of high accuracy. However, it involves the multi-dimensional nonlinear optimization problem, and the computational complexity is usually high. In this paper, we propose a low-complexity DOA estimation algorithm based on constraint solution space. Firstly, we use ESPRIT algorithm to limit the solution space around the best solution and reduce the computational range. Then, we find the best solution in a smaller solution space constraint by Cramr-Rao Bound (CRB), and seek repeatedly until reaching the global optimal solution of WSF algorithm by using the space of the best solution. By limiting the searching process in smaller solution space, this strategy controls the direction of convergence and reduces computational complexity. The experimental results show that this algorithm needs less iterations when the same DOA accuracy is required, and the computational complexity is apparently reduced.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-019-06994-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2020-04, Vol.111 (4), p.2435-2447
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2386947207
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Communications Engineering
Complexity
Computer Communication Networks
Direction of arrival
Engineering
Networks
Optimization
Signal,Image and Speech Processing
Solution space
title Low-Complexity DOA Estimation Based on Constraint Solution Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Complexity%20DOA%20Estimation%20Based%20on%20Constraint%20Solution%20Space&rft.jtitle=Wireless%20personal%20communications&rft.au=Li,%20ShiBao&rft.date=2020-04-01&rft.volume=111&rft.issue=4&rft.spage=2435&rft.epage=2447&rft.pages=2435-2447&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-019-06994-8&rft_dat=%3Cproquest_cross%3E2386947207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386947207&rft_id=info:pmid/&rfr_iscdi=true