Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks
Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslin...
Gespeichert in:
Veröffentlicht in: | Polymer chemistry 2020-04, Vol.11 (14), p.2475-2484 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2484 |
---|---|
container_issue | 14 |
container_start_page | 2475 |
container_title | Polymer chemistry |
container_volume | 11 |
creator | Roose, Patrice Vermoesen, Evelien Van Vlierberghe, Sandra |
description | Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslinking irrespective of the initial physical state of the multifunctional precursors. Effects referred to as radical trapping and caging in the literature are clearly specified and a closed-form expression with a limited number of adjustable parameters is obtained which can be compared to experimental kinetics. In particular, the relation between polymerization rate and functional conversion can be reduced to expressions with three and four parameters in the limits of "solid-state" and "steady-state" kinetics, respectively. In the case of photo-induced free-radical polymerization and within the slow decomposition regime of the initiator, the single parameter with an explicit dependence on the incident light intensity is predicted to behave proportionally. The model is validated by comparing the relevant expressions to original calorimetric data for the free-radical photopolymerization kinetics of different acrylate urethane precursors at two temperatures, providing illustrations for solid-to-solid and liquid-to-rubber transformations. Careful monitoring of the effect of light intensity corroborates the expected scaling and additionally offers reliable estimates for the kinetic coefficients of propagation and termination.
A unified model expressed in closed-form is elaborated for the kinetics of free-radical polymerization and successfully compared to experimental data. |
doi_str_mv | 10.1039/d0py00106f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2386767019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386767019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3760541e47e2626c0d52b38c9a1338e61868425939ab5b5ef95d6103bcf35b993</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpwo5kxIYUsOPYiUdUKCBVwAADU-T4g7pN42CnQuHX47SobNxyd7rn3ju9AJxidIUR4dcKtT1CGDFzAEY4pzzhnKWH-5pmx2ASwhLFIDhLCRuB8OSaJHRaqB4GKWrbfMC1U7qGxnnYLTRc2UZ3VgbozLZvF65ziW3URmoFjdcaeqFs3IWtq_u19vZbdNY1w4L0LoQouhp0o86X86twAo6MqIOe_OYxeJvdvU4fkvnz_eP0Zp5IkpEuITlDNMM6y3XKUiaRomlFCskFJqTQDBesyFLKCRcVrag2nCoWjaikIbTinIzBxU639e5zo0NXLt3GN_FkmZKC5SxHeKAud9T2V69N2Xq7Fr4vMSoHX8tb9PK-9XUW4bMd7IPcc3--x_n5f_OyVYb8AOjwgMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386767019</pqid></control><display><type>article</type><title>Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Roose, Patrice ; Vermoesen, Evelien ; Van Vlierberghe, Sandra</creator><creatorcontrib>Roose, Patrice ; Vermoesen, Evelien ; Van Vlierberghe, Sandra</creatorcontrib><description>Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslinking irrespective of the initial physical state of the multifunctional precursors. Effects referred to as radical trapping and caging in the literature are clearly specified and a closed-form expression with a limited number of adjustable parameters is obtained which can be compared to experimental kinetics. In particular, the relation between polymerization rate and functional conversion can be reduced to expressions with three and four parameters in the limits of "solid-state" and "steady-state" kinetics, respectively. In the case of photo-induced free-radical polymerization and within the slow decomposition regime of the initiator, the single parameter with an explicit dependence on the incident light intensity is predicted to behave proportionally. The model is validated by comparing the relevant expressions to original calorimetric data for the free-radical photopolymerization kinetics of different acrylate urethane precursors at two temperatures, providing illustrations for solid-to-solid and liquid-to-rubber transformations. Careful monitoring of the effect of light intensity corroborates the expected scaling and additionally offers reliable estimates for the kinetic coefficients of propagation and termination.
A unified model expressed in closed-form is elaborated for the kinetics of free-radical polymerization and successfully compared to experimental data.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/d0py00106f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crosslinking ; Free radical polymerization ; Free radicals ; Incident light ; Kinetic coefficients ; Kinetics ; Luminous intensity ; Mathematical models ; Parameters ; Photopolymerization ; Polymer chemistry ; Polymerization ; Precursors ; Rubber ; Scaling ; Solid state ; Termination (polymerization)</subject><ispartof>Polymer chemistry, 2020-04, Vol.11 (14), p.2475-2484</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3760541e47e2626c0d52b38c9a1338e61868425939ab5b5ef95d6103bcf35b993</citedby><cites>FETCH-LOGICAL-c343t-3760541e47e2626c0d52b38c9a1338e61868425939ab5b5ef95d6103bcf35b993</cites><orcidid>0000-0001-7688-1682 ; 0000-0001-8632-9170 ; 0000-0003-2768-701X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Roose, Patrice</creatorcontrib><creatorcontrib>Vermoesen, Evelien</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><title>Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks</title><title>Polymer chemistry</title><description>Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslinking irrespective of the initial physical state of the multifunctional precursors. Effects referred to as radical trapping and caging in the literature are clearly specified and a closed-form expression with a limited number of adjustable parameters is obtained which can be compared to experimental kinetics. In particular, the relation between polymerization rate and functional conversion can be reduced to expressions with three and four parameters in the limits of "solid-state" and "steady-state" kinetics, respectively. In the case of photo-induced free-radical polymerization and within the slow decomposition regime of the initiator, the single parameter with an explicit dependence on the incident light intensity is predicted to behave proportionally. The model is validated by comparing the relevant expressions to original calorimetric data for the free-radical photopolymerization kinetics of different acrylate urethane precursors at two temperatures, providing illustrations for solid-to-solid and liquid-to-rubber transformations. Careful monitoring of the effect of light intensity corroborates the expected scaling and additionally offers reliable estimates for the kinetic coefficients of propagation and termination.
A unified model expressed in closed-form is elaborated for the kinetics of free-radical polymerization and successfully compared to experimental data.</description><subject>Crosslinking</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>Incident light</subject><subject>Kinetic coefficients</subject><subject>Kinetics</subject><subject>Luminous intensity</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Photopolymerization</subject><subject>Polymer chemistry</subject><subject>Polymerization</subject><subject>Precursors</subject><subject>Rubber</subject><subject>Scaling</subject><subject>Solid state</subject><subject>Termination (polymerization)</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpwo5kxIYUsOPYiUdUKCBVwAADU-T4g7pN42CnQuHX47SobNxyd7rn3ju9AJxidIUR4dcKtT1CGDFzAEY4pzzhnKWH-5pmx2ASwhLFIDhLCRuB8OSaJHRaqB4GKWrbfMC1U7qGxnnYLTRc2UZ3VgbozLZvF65ziW3URmoFjdcaeqFs3IWtq_u19vZbdNY1w4L0LoQouhp0o86X86twAo6MqIOe_OYxeJvdvU4fkvnz_eP0Zp5IkpEuITlDNMM6y3XKUiaRomlFCskFJqTQDBesyFLKCRcVrag2nCoWjaikIbTinIzBxU639e5zo0NXLt3GN_FkmZKC5SxHeKAud9T2V69N2Xq7Fr4vMSoHX8tb9PK-9XUW4bMd7IPcc3--x_n5f_OyVYb8AOjwgMs</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Roose, Patrice</creator><creator>Vermoesen, Evelien</creator><creator>Van Vlierberghe, Sandra</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0001-8632-9170</orcidid><orcidid>https://orcid.org/0000-0003-2768-701X</orcidid></search><sort><creationdate>20200414</creationdate><title>Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks</title><author>Roose, Patrice ; Vermoesen, Evelien ; Van Vlierberghe, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3760541e47e2626c0d52b38c9a1338e61868425939ab5b5ef95d6103bcf35b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crosslinking</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>Incident light</topic><topic>Kinetic coefficients</topic><topic>Kinetics</topic><topic>Luminous intensity</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Photopolymerization</topic><topic>Polymer chemistry</topic><topic>Polymerization</topic><topic>Precursors</topic><topic>Rubber</topic><topic>Scaling</topic><topic>Solid state</topic><topic>Termination (polymerization)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roose, Patrice</creatorcontrib><creatorcontrib>Vermoesen, Evelien</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roose, Patrice</au><au>Vermoesen, Evelien</au><au>Van Vlierberghe, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks</atitle><jtitle>Polymer chemistry</jtitle><date>2020-04-14</date><risdate>2020</risdate><volume>11</volume><issue>14</issue><spage>2475</spage><epage>2484</epage><pages>2475-2484</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>Recently, a semi-empirical scaling model was introduced to account for the free-radical polymerization kinetics of acrylated urethane precursors in the solid-state. By describing the radical initiation process in more detail, the kinetic model is extended herein towards general free-radical crosslinking irrespective of the initial physical state of the multifunctional precursors. Effects referred to as radical trapping and caging in the literature are clearly specified and a closed-form expression with a limited number of adjustable parameters is obtained which can be compared to experimental kinetics. In particular, the relation between polymerization rate and functional conversion can be reduced to expressions with three and four parameters in the limits of "solid-state" and "steady-state" kinetics, respectively. In the case of photo-induced free-radical polymerization and within the slow decomposition regime of the initiator, the single parameter with an explicit dependence on the incident light intensity is predicted to behave proportionally. The model is validated by comparing the relevant expressions to original calorimetric data for the free-radical photopolymerization kinetics of different acrylate urethane precursors at two temperatures, providing illustrations for solid-to-solid and liquid-to-rubber transformations. Careful monitoring of the effect of light intensity corroborates the expected scaling and additionally offers reliable estimates for the kinetic coefficients of propagation and termination.
A unified model expressed in closed-form is elaborated for the kinetics of free-radical polymerization and successfully compared to experimental data.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0py00106f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0001-8632-9170</orcidid><orcidid>https://orcid.org/0000-0003-2768-701X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-9954 |
ispartof | Polymer chemistry, 2020-04, Vol.11 (14), p.2475-2484 |
issn | 1759-9954 1759-9962 |
language | eng |
recordid | cdi_proquest_journals_2386767019 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Crosslinking Free radical polymerization Free radicals Incident light Kinetic coefficients Kinetics Luminous intensity Mathematical models Parameters Photopolymerization Polymer chemistry Polymerization Precursors Rubber Scaling Solid state Termination (polymerization) |
title | Non-steady scaling model for the kinetics of the photo-induced free radical polymerization of crosslinking networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-steady%20scaling%20model%20for%20the%20kinetics%20of%20the%20photo-induced%20free%20radical%20polymerization%20of%20crosslinking%20networks&rft.jtitle=Polymer%20chemistry&rft.au=Roose,%20Patrice&rft.date=2020-04-14&rft.volume=11&rft.issue=14&rft.spage=2475&rft.epage=2484&rft.pages=2475-2484&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/d0py00106f&rft_dat=%3Cproquest_rsc_p%3E2386767019%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386767019&rft_id=info:pmid/&rfr_iscdi=true |