Upper-contour strategy-proofness in the probabilistic assignment problem

Bogomolnaia and Moulin (J Econ Theory 100:295-328, 2001) show that there is no rule satisfying stochastic dominance efficiency, equal treatment of equals and stochastic dominance strategy-proofness for a probabilistic assignment problem of indivisible objects. Recently, Mennle and Seuken (Partial st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social choice and welfare 2020-04, Vol.54 (4), p.667-687
Hauptverfasser: Chun, Youngsub, Yun, Kiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 4
container_start_page 667
container_title Social choice and welfare
container_volume 54
creator Chun, Youngsub
Yun, Kiyong
description Bogomolnaia and Moulin (J Econ Theory 100:295-328, 2001) show that there is no rule satisfying stochastic dominance efficiency, equal treatment of equals and stochastic dominance strategy-proofness for a probabilistic assignment problem of indivisible objects. Recently, Mennle and Seuken (Partial strategyproofness: relaxing strategyproofness for the random assignment problem. Mimeo, 2017) show that stochastic dominance strategy-proofness is equivalent to the combination of three axioms, swap monotonicity, upper invariance, and lower invariance. In this paper, we introduce a weakening of stochastic dominance strategy-proofness, called upper-contour strategy-proofness, which requires that if the upper-contour sets of some objects are the same in two preference relations, then the sum of probabilities assigned to the objects in the two upper-contour sets should be the same. First, we show that upper-contour strategy-proofness is equivalent to the combination of two axioms, upper invariance and lower invariance. Next, we show that the impossibility result still holds even though stochastic dominance strategy-proofness is weakened to upper-contour strategy-proofness.
doi_str_mv 10.1007/s00355-019-01226-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2386678572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45286070</jstor_id><sourcerecordid>45286070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-4cccbed4dfa5e5065af967ef5ca627ff04f954159284e98b2e7bc3f6c3f215983</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GpAXEbzn5mlFLVCwY0FdyGTJnVKmxlz00Xf3tgRdOXiEjg53z2Xg9A1JXeUEH0PhHApMaFNGcYUpidoQgVnmFH9foomhOoiairO0QXAhhDCmKgnaL4cBp-w62Pu96mCnGz26wMeUt-H6AGqLlb5w1dFaG3bbTvInassQLeOOx_z8WPrd5foLNgt-Kufd4qWT49vszlevD6_zB4W2AkqMhbOudavxCpY6SVR0oZGaR-ks4rpEIgIjRRUNqwWvqlb5nXreFBlWFFrPkU3496S-7n3kM2mHB5LpGG8VkrXUrPiYqPLpR4g-WCG1O1sOhhKzHdjZmzMlMbMsTFDC8RHCIo5rn36Xf0vdTtSG8h9-pvDeCGEZLUimvAvM797Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386678572</pqid></control><display><type>article</type><title>Upper-contour strategy-proofness in the probabilistic assignment problem</title><source>Worldwide Political Science Abstracts</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>EBSCOhost Political Science Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chun, Youngsub ; Yun, Kiyong</creator><creatorcontrib>Chun, Youngsub ; Yun, Kiyong</creatorcontrib><description>Bogomolnaia and Moulin (J Econ Theory 100:295-328, 2001) show that there is no rule satisfying stochastic dominance efficiency, equal treatment of equals and stochastic dominance strategy-proofness for a probabilistic assignment problem of indivisible objects. Recently, Mennle and Seuken (Partial strategyproofness: relaxing strategyproofness for the random assignment problem. Mimeo, 2017) show that stochastic dominance strategy-proofness is equivalent to the combination of three axioms, swap monotonicity, upper invariance, and lower invariance. In this paper, we introduce a weakening of stochastic dominance strategy-proofness, called upper-contour strategy-proofness, which requires that if the upper-contour sets of some objects are the same in two preference relations, then the sum of probabilities assigned to the objects in the two upper-contour sets should be the same. First, we show that upper-contour strategy-proofness is equivalent to the combination of two axioms, upper invariance and lower invariance. Next, we show that the impossibility result still holds even though stochastic dominance strategy-proofness is weakened to upper-contour strategy-proofness.</description><identifier>ISSN: 0176-1714</identifier><identifier>EISSN: 1432-217X</identifier><identifier>DOI: 10.1007/s00355-019-01226-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Assignment ; Assignment problem ; Dominance ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Efficiency ; Game Theory ; International Political Economy ; Original Paper ; Probability ; Public Finance ; Social and Behav. Sciences ; Social Policy ; Stochastic models</subject><ispartof>Social choice and welfare, 2020-04, Vol.54 (4), p.667-687</ispartof><rights>Springer-Verlag GmbH, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-4cccbed4dfa5e5065af967ef5ca627ff04f954159284e98b2e7bc3f6c3f215983</citedby><cites>FETCH-LOGICAL-c414t-4cccbed4dfa5e5065af967ef5ca627ff04f954159284e98b2e7bc3f6c3f215983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45286070$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45286070$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,12845,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Chun, Youngsub</creatorcontrib><creatorcontrib>Yun, Kiyong</creatorcontrib><title>Upper-contour strategy-proofness in the probabilistic assignment problem</title><title>Social choice and welfare</title><addtitle>Soc Choice Welf</addtitle><description>Bogomolnaia and Moulin (J Econ Theory 100:295-328, 2001) show that there is no rule satisfying stochastic dominance efficiency, equal treatment of equals and stochastic dominance strategy-proofness for a probabilistic assignment problem of indivisible objects. Recently, Mennle and Seuken (Partial strategyproofness: relaxing strategyproofness for the random assignment problem. Mimeo, 2017) show that stochastic dominance strategy-proofness is equivalent to the combination of three axioms, swap monotonicity, upper invariance, and lower invariance. In this paper, we introduce a weakening of stochastic dominance strategy-proofness, called upper-contour strategy-proofness, which requires that if the upper-contour sets of some objects are the same in two preference relations, then the sum of probabilities assigned to the objects in the two upper-contour sets should be the same. First, we show that upper-contour strategy-proofness is equivalent to the combination of two axioms, upper invariance and lower invariance. Next, we show that the impossibility result still holds even though stochastic dominance strategy-proofness is weakened to upper-contour strategy-proofness.</description><subject>Assignment</subject><subject>Assignment problem</subject><subject>Dominance</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Efficiency</subject><subject>Game Theory</subject><subject>International Political Economy</subject><subject>Original Paper</subject><subject>Probability</subject><subject>Public Finance</subject><subject>Social and Behav. Sciences</subject><subject>Social Policy</subject><subject>Stochastic models</subject><issn>0176-1714</issn><issn>1432-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4GpAXEbzn5mlFLVCwY0FdyGTJnVKmxlz00Xf3tgRdOXiEjg53z2Xg9A1JXeUEH0PhHApMaFNGcYUpidoQgVnmFH9foomhOoiairO0QXAhhDCmKgnaL4cBp-w62Pu96mCnGz26wMeUt-H6AGqLlb5w1dFaG3bbTvInassQLeOOx_z8WPrd5foLNgt-Kufd4qWT49vszlevD6_zB4W2AkqMhbOudavxCpY6SVR0oZGaR-ks4rpEIgIjRRUNqwWvqlb5nXreFBlWFFrPkU3496S-7n3kM2mHB5LpGG8VkrXUrPiYqPLpR4g-WCG1O1sOhhKzHdjZmzMlMbMsTFDC8RHCIo5rn36Xf0vdTtSG8h9-pvDeCGEZLUimvAvM797Og</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chun, Youngsub</creator><creator>Yun, Kiyong</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7UB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88J</scope><scope>8AO</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KC-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Upper-contour strategy-proofness in the probabilistic assignment problem</title><author>Chun, Youngsub ; Yun, Kiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-4cccbed4dfa5e5065af967ef5ca627ff04f954159284e98b2e7bc3f6c3f215983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assignment</topic><topic>Assignment problem</topic><topic>Dominance</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Efficiency</topic><topic>Game Theory</topic><topic>International Political Economy</topic><topic>Original Paper</topic><topic>Probability</topic><topic>Public Finance</topic><topic>Social and Behav. Sciences</topic><topic>Social Policy</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Youngsub</creatorcontrib><creatorcontrib>Yun, Kiyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Social choice and welfare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Youngsub</au><au>Yun, Kiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper-contour strategy-proofness in the probabilistic assignment problem</atitle><jtitle>Social choice and welfare</jtitle><stitle>Soc Choice Welf</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>54</volume><issue>4</issue><spage>667</spage><epage>687</epage><pages>667-687</pages><issn>0176-1714</issn><eissn>1432-217X</eissn><abstract>Bogomolnaia and Moulin (J Econ Theory 100:295-328, 2001) show that there is no rule satisfying stochastic dominance efficiency, equal treatment of equals and stochastic dominance strategy-proofness for a probabilistic assignment problem of indivisible objects. Recently, Mennle and Seuken (Partial strategyproofness: relaxing strategyproofness for the random assignment problem. Mimeo, 2017) show that stochastic dominance strategy-proofness is equivalent to the combination of three axioms, swap monotonicity, upper invariance, and lower invariance. In this paper, we introduce a weakening of stochastic dominance strategy-proofness, called upper-contour strategy-proofness, which requires that if the upper-contour sets of some objects are the same in two preference relations, then the sum of probabilities assigned to the objects in the two upper-contour sets should be the same. First, we show that upper-contour strategy-proofness is equivalent to the combination of two axioms, upper invariance and lower invariance. Next, we show that the impossibility result still holds even though stochastic dominance strategy-proofness is weakened to upper-contour strategy-proofness.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00355-019-01226-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-1714
ispartof Social choice and welfare, 2020-04, Vol.54 (4), p.667-687
issn 0176-1714
1432-217X
language eng
recordid cdi_proquest_journals_2386678572
source Worldwide Political Science Abstracts; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; EBSCOhost Political Science Complete; SpringerLink Journals - AutoHoldings
subjects Assignment
Assignment problem
Dominance
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Efficiency
Game Theory
International Political Economy
Original Paper
Probability
Public Finance
Social and Behav. Sciences
Social Policy
Stochastic models
title Upper-contour strategy-proofness in the probabilistic assignment problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper-contour%20strategy-proofness%20in%20the%20probabilistic%20assignment%20problem&rft.jtitle=Social%20choice%20and%20welfare&rft.au=Chun,%20Youngsub&rft.date=2020-04-01&rft.volume=54&rft.issue=4&rft.spage=667&rft.epage=687&rft.pages=667-687&rft.issn=0176-1714&rft.eissn=1432-217X&rft_id=info:doi/10.1007/s00355-019-01226-1&rft_dat=%3Cjstor_proqu%3E45286070%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386678572&rft_id=info:pmid/&rft_jstor_id=45286070&rfr_iscdi=true