A multi-population differential evolution with best-random mutation strategy for large-scale global optimization

Differential evolution (DE) is an efficient population-based search algorithm with good robustness, but it faces challenges in dealing with Large-Scale Global Optimization (LSGO). In this paper, we proposed an improved multi-population differential evolution with best-random mutation strategy (calle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-05, Vol.50 (5), p.1510-1526
Hauptverfasser: Ma, Yongjie, Bai, Yulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526
container_issue 5
container_start_page 1510
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 50
creator Ma, Yongjie
Bai, Yulong
description Differential evolution (DE) is an efficient population-based search algorithm with good robustness, but it faces challenges in dealing with Large-Scale Global Optimization (LSGO). In this paper, we proposed an improved multi-population differential evolution with best-random mutation strategy (called mDE-brM). The population is divided into three sub-populations based on the fitness values, each sub-population uses different mutation strategies and control parameters, individuals share different mutation strategies and control parameters by migrating among sub-populations. A novel mutation strategy is proposed, which uses the best individual and a randomly selected individual to generate base vector. The performance of mDE-brM is evaluated on the CEC 2013 LSGO benchmark suite and compared with 5 state-of-the-art optimization techniques. The results show that, compared with other contestant algorithms, mDE-brM has a competitive performance and better efficiency in LSGO.
doi_str_mv 10.1007/s10489-019-01613-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386673941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386673941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-77e8171c438bf0ff678087e946b24d882b141a2af2171fa486896d54375066723</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19F8TZIuh8EvENwouAtpm9QOaVOTVBl_vZmp4M5FeBDOPe9xAbjE6BojJG4iRkyWEOH945hCcgQWeCUoFKwUx2CBSsIg5-XbKTiLcYsQohThBRjXRT-51MHRj5PTqfND0XTWmmCG1GlXmE_vpsP3V5fei8rEBIMeGt_nYJoDMQWdTLsrrA-F06E1MNbamaJ1vsoOP6au774P8Dk4sdpFc_E7l-D17vZl8wCfnu8fN-snWFNcJiiEkVjgmlFZWWQtFxJJYUrGK8IaKUmFGdZEW5Ipq5nksuTNilGxQpwLQpfgavaOwX9M-Wq19VMY8kpFqMwILRnOFJmpOvgYg7FqDF2vw05hpPbNqrlZlZtVh2bVXk3nUMzw0Jrwp_4n9QO8RX0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386673941</pqid></control><display><type>article</type><title>A multi-population differential evolution with best-random mutation strategy for large-scale global optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Yongjie ; Bai, Yulong</creator><creatorcontrib>Ma, Yongjie ; Bai, Yulong</creatorcontrib><description>Differential evolution (DE) is an efficient population-based search algorithm with good robustness, but it faces challenges in dealing with Large-Scale Global Optimization (LSGO). In this paper, we proposed an improved multi-population differential evolution with best-random mutation strategy (called mDE-brM). The population is divided into three sub-populations based on the fitness values, each sub-population uses different mutation strategies and control parameters, individuals share different mutation strategies and control parameters by migrating among sub-populations. A novel mutation strategy is proposed, which uses the best individual and a randomly selected individual to generate base vector. The performance of mDE-brM is evaluated on the CEC 2013 LSGO benchmark suite and compared with 5 state-of-the-art optimization techniques. The results show that, compared with other contestant algorithms, mDE-brM has a competitive performance and better efficiency in LSGO.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01613-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Evolutionary computation ; Global optimization ; Machines ; Manufacturing ; Mechanical Engineering ; Mutation ; Optimization techniques ; Parameters ; Performance evaluation ; Population ; Populations ; Processes ; Search algorithms ; Strategy</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020-05, Vol.50 (5), p.1510-1526</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-77e8171c438bf0ff678087e946b24d882b141a2af2171fa486896d54375066723</citedby><cites>FETCH-LOGICAL-c319t-77e8171c438bf0ff678087e946b24d882b141a2af2171fa486896d54375066723</cites><orcidid>0000-0002-5062-9224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01613-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01613-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ma, Yongjie</creatorcontrib><creatorcontrib>Bai, Yulong</creatorcontrib><title>A multi-population differential evolution with best-random mutation strategy for large-scale global optimization</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Differential evolution (DE) is an efficient population-based search algorithm with good robustness, but it faces challenges in dealing with Large-Scale Global Optimization (LSGO). In this paper, we proposed an improved multi-population differential evolution with best-random mutation strategy (called mDE-brM). The population is divided into three sub-populations based on the fitness values, each sub-population uses different mutation strategies and control parameters, individuals share different mutation strategies and control parameters by migrating among sub-populations. A novel mutation strategy is proposed, which uses the best individual and a randomly selected individual to generate base vector. The performance of mDE-brM is evaluated on the CEC 2013 LSGO benchmark suite and compared with 5 state-of-the-art optimization techniques. The results show that, compared with other contestant algorithms, mDE-brM has a competitive performance and better efficiency in LSGO.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Evolutionary computation</subject><subject>Global optimization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mutation</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Population</subject><subject>Populations</subject><subject>Processes</subject><subject>Search algorithms</subject><subject>Strategy</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcF19F8TZIuh8EvENwouAtpm9QOaVOTVBl_vZmp4M5FeBDOPe9xAbjE6BojJG4iRkyWEOH945hCcgQWeCUoFKwUx2CBSsIg5-XbKTiLcYsQohThBRjXRT-51MHRj5PTqfND0XTWmmCG1GlXmE_vpsP3V5fei8rEBIMeGt_nYJoDMQWdTLsrrA-F06E1MNbamaJ1vsoOP6au774P8Dk4sdpFc_E7l-D17vZl8wCfnu8fN-snWFNcJiiEkVjgmlFZWWQtFxJJYUrGK8IaKUmFGdZEW5Ipq5nksuTNilGxQpwLQpfgavaOwX9M-Wq19VMY8kpFqMwILRnOFJmpOvgYg7FqDF2vw05hpPbNqrlZlZtVh2bVXk3nUMzw0Jrwp_4n9QO8RX0Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ma, Yongjie</creator><creator>Bai, Yulong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5062-9224</orcidid></search><sort><creationdate>20200501</creationdate><title>A multi-population differential evolution with best-random mutation strategy for large-scale global optimization</title><author>Ma, Yongjie ; Bai, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-77e8171c438bf0ff678087e946b24d882b141a2af2171fa486896d54375066723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Evolutionary computation</topic><topic>Global optimization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mutation</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Population</topic><topic>Populations</topic><topic>Processes</topic><topic>Search algorithms</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yongjie</creatorcontrib><creatorcontrib>Bai, Yulong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yongjie</au><au>Bai, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-population differential evolution with best-random mutation strategy for large-scale global optimization</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>50</volume><issue>5</issue><spage>1510</spage><epage>1526</epage><pages>1510-1526</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Differential evolution (DE) is an efficient population-based search algorithm with good robustness, but it faces challenges in dealing with Large-Scale Global Optimization (LSGO). In this paper, we proposed an improved multi-population differential evolution with best-random mutation strategy (called mDE-brM). The population is divided into three sub-populations based on the fitness values, each sub-population uses different mutation strategies and control parameters, individuals share different mutation strategies and control parameters by migrating among sub-populations. A novel mutation strategy is proposed, which uses the best individual and a randomly selected individual to generate base vector. The performance of mDE-brM is evaluated on the CEC 2013 LSGO benchmark suite and compared with 5 state-of-the-art optimization techniques. The results show that, compared with other contestant algorithms, mDE-brM has a competitive performance and better efficiency in LSGO.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01613-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5062-9224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2020-05, Vol.50 (5), p.1510-1526
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2386673941
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Computer Science
Evolutionary computation
Global optimization
Machines
Manufacturing
Mechanical Engineering
Mutation
Optimization techniques
Parameters
Performance evaluation
Population
Populations
Processes
Search algorithms
Strategy
title A multi-population differential evolution with best-random mutation strategy for large-scale global optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-population%20differential%20evolution%20with%20best-random%20mutation%20strategy%20for%20large-scale%20global%20optimization&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Ma,%20Yongjie&rft.date=2020-05-01&rft.volume=50&rft.issue=5&rft.spage=1510&rft.epage=1526&rft.pages=1510-1526&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01613-2&rft_dat=%3Cproquest_cross%3E2386673941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386673941&rft_id=info:pmid/&rfr_iscdi=true