Impact of late spring Siberian snow on summer rainfall in South-Central China

Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2020-04, Vol.54 (7-8), p.3803-3818
Hauptverfasser: Shen, Haibo, Li, Fei, He, Shengping, Orsolini, Yvan J., Li, Jingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3818
container_issue 7-8
container_start_page 3803
container_title Climate dynamics
container_volume 54
creator Shen, Haibo
Li, Fei
He, Shengping
Orsolini, Yvan J.
Li, Jingyi
description Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.
doi_str_mv 10.1007/s00382-020-05206-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2386673896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619660391</galeid><sourcerecordid>A619660391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuAIHjRmY-2SS5l-DFQBKfXIW3TLaNNZpKi_nujFXQ3kosDJ8-TnOQF4BSjGUaIXQaEKCcZIihDBUFlVuyBCc5panGR74MJEhRlrGDFITgKYYMQzktGJuBh0W9VHaFrYaeihmHrjV3Bpam0N8rCYN0bdKkOfa899MrYVnUdNBYu3RDX2Vzb6FUH52tj1TE4SLtBn_zUKXi5uX6e32X3j7eL-dV9VueExqwVlSoEF4RrIgoiCKtI23AheKVwwyrO60Y1jNcEq7apcN4QwSosMBNYqxzRKTgbz9169zroEOXGDd6mKyWhvCwZ5aJM1GykVqrTMg3u0qR1Wo3uTe2sbk3qX5VYlCWiAifhYkdITNTvcaWGEORi-bTLnv9h11p1cR1cN0TjbNgFyQjW3oXgdSvTF_fKf0iM5Fd4cgxPpvDkd3iySBIdpTEP7X8f-I_1CbiimZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386673896</pqid></control><display><type>article</type><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</creator><creatorcontrib>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</creatorcontrib><description>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-020-05206-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Anticyclones ; Atmospheric precipitations ; China ; Climatology ; Debris flow ; Disasters ; Earth and Environmental Science ; Earth Sciences ; East Asia ; Geophysics/Geodesy ; Landslides ; Mountains ; Natural disasters ; Oceanography ; Oceans ; Planetary waves ; Positive feedback ; Precipitation ; Rain ; Rain and rainfall ; Rainfall ; River valleys ; Rivers ; Rossby waves ; Russia ; Sea surface ; Sea surface temperature ; Sea surface temperature anomalies ; Snow ; Snow-water equivalent ; Soil ; South China Sea ; Spring ; Spring (season) ; Summer ; Summer rainfall ; Surface temperature ; Temperature anomalies ; Temperature gradients ; Tropical climate ; Troposphere ; Water vapor ; Water vapor transport ; Water vapour ; Wave packets ; Wave propagation</subject><ispartof>Climate dynamics, 2020-04, Vol.54 (7-8), p.3803-3818</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</citedby><cites>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-020-05206-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-020-05206-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shen, Haibo</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Li, Jingyi</creatorcontrib><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</description><subject>Anomalies</subject><subject>Anticyclones</subject><subject>Atmospheric precipitations</subject><subject>China</subject><subject>Climatology</subject><subject>Debris flow</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>East Asia</subject><subject>Geophysics/Geodesy</subject><subject>Landslides</subject><subject>Mountains</subject><subject>Natural disasters</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Planetary waves</subject><subject>Positive feedback</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>River valleys</subject><subject>Rivers</subject><subject>Rossby waves</subject><subject>Russia</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Snow</subject><subject>Snow-water equivalent</subject><subject>Soil</subject><subject>South China Sea</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>Summer rainfall</subject><subject>Surface temperature</subject><subject>Temperature anomalies</subject><subject>Temperature gradients</subject><subject>Tropical climate</subject><subject>Troposphere</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LwzAUhoMoOKd_wKuAIHjRmY-2SS5l-DFQBKfXIW3TLaNNZpKi_nujFXQ3kosDJ8-TnOQF4BSjGUaIXQaEKCcZIihDBUFlVuyBCc5panGR74MJEhRlrGDFITgKYYMQzktGJuBh0W9VHaFrYaeihmHrjV3Bpam0N8rCYN0bdKkOfa899MrYVnUdNBYu3RDX2Vzb6FUH52tj1TE4SLtBn_zUKXi5uX6e32X3j7eL-dV9VueExqwVlSoEF4RrIgoiCKtI23AheKVwwyrO60Y1jNcEq7apcN4QwSosMBNYqxzRKTgbz9169zroEOXGDd6mKyWhvCwZ5aJM1GykVqrTMg3u0qR1Wo3uTe2sbk3qX5VYlCWiAifhYkdITNTvcaWGEORi-bTLnv9h11p1cR1cN0TjbNgFyQjW3oXgdSvTF_fKf0iM5Fd4cgxPpvDkd3iySBIdpTEP7X8f-I_1CbiimZw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shen, Haibo</creator><creator>Li, Fei</creator><creator>He, Shengping</creator><creator>Orsolini, Yvan J.</creator><creator>Li, Jingyi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><author>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anticyclones</topic><topic>Atmospheric precipitations</topic><topic>China</topic><topic>Climatology</topic><topic>Debris flow</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>East Asia</topic><topic>Geophysics/Geodesy</topic><topic>Landslides</topic><topic>Mountains</topic><topic>Natural disasters</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Planetary waves</topic><topic>Positive feedback</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>River valleys</topic><topic>Rivers</topic><topic>Rossby waves</topic><topic>Russia</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Snow</topic><topic>Snow-water equivalent</topic><topic>Soil</topic><topic>South China Sea</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>Summer rainfall</topic><topic>Surface temperature</topic><topic>Temperature anomalies</topic><topic>Temperature gradients</topic><topic>Tropical climate</topic><topic>Troposphere</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Haibo</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Li, Jingyi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Haibo</au><au>Li, Fei</au><au>He, Shengping</au><au>Orsolini, Yvan J.</au><au>Li, Jingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of late spring Siberian snow on summer rainfall in South-Central China</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>54</volume><issue>7-8</issue><spage>3803</spage><epage>3818</epage><pages>3803-3818</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-020-05206-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2020-04, Vol.54 (7-8), p.3803-3818
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2386673896
source SpringerLink Journals - AutoHoldings
subjects Anomalies
Anticyclones
Atmospheric precipitations
China
Climatology
Debris flow
Disasters
Earth and Environmental Science
Earth Sciences
East Asia
Geophysics/Geodesy
Landslides
Mountains
Natural disasters
Oceanography
Oceans
Planetary waves
Positive feedback
Precipitation
Rain
Rain and rainfall
Rainfall
River valleys
Rivers
Rossby waves
Russia
Sea surface
Sea surface temperature
Sea surface temperature anomalies
Snow
Snow-water equivalent
Soil
South China Sea
Spring
Spring (season)
Summer
Summer rainfall
Surface temperature
Temperature anomalies
Temperature gradients
Tropical climate
Troposphere
Water vapor
Water vapor transport
Water vapour
Wave packets
Wave propagation
title Impact of late spring Siberian snow on summer rainfall in South-Central China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20late%20spring%20Siberian%20snow%20on%20summer%20rainfall%20in%20South-Central%20China&rft.jtitle=Climate%20dynamics&rft.au=Shen,%20Haibo&rft.date=2020-04-01&rft.volume=54&rft.issue=7-8&rft.spage=3803&rft.epage=3818&rft.pages=3803-3818&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-020-05206-5&rft_dat=%3Cgale_proqu%3EA619660391%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386673896&rft_id=info:pmid/&rft_galeid=A619660391&rfr_iscdi=true