Impact of late spring Siberian snow on summer rainfall in South-Central China
Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SW...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2020-04, Vol.54 (7-8), p.3803-3818 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3818 |
---|---|
container_issue | 7-8 |
container_start_page | 3803 |
container_title | Climate dynamics |
container_volume | 54 |
creator | Shen, Haibo Li, Fei He, Shengping Orsolini, Yvan J. Li, Jingyi |
description | Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation. |
doi_str_mv | 10.1007/s00382-020-05206-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2386673896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619660391</galeid><sourcerecordid>A619660391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuAIHjRmY-2SS5l-DFQBKfXIW3TLaNNZpKi_nujFXQ3kosDJ8-TnOQF4BSjGUaIXQaEKCcZIihDBUFlVuyBCc5panGR74MJEhRlrGDFITgKYYMQzktGJuBh0W9VHaFrYaeihmHrjV3Bpam0N8rCYN0bdKkOfa899MrYVnUdNBYu3RDX2Vzb6FUH52tj1TE4SLtBn_zUKXi5uX6e32X3j7eL-dV9VueExqwVlSoEF4RrIgoiCKtI23AheKVwwyrO60Y1jNcEq7apcN4QwSosMBNYqxzRKTgbz9169zroEOXGDd6mKyWhvCwZ5aJM1GykVqrTMg3u0qR1Wo3uTe2sbk3qX5VYlCWiAifhYkdITNTvcaWGEORi-bTLnv9h11p1cR1cN0TjbNgFyQjW3oXgdSvTF_fKf0iM5Fd4cgxPpvDkd3iySBIdpTEP7X8f-I_1CbiimZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386673896</pqid></control><display><type>article</type><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</creator><creatorcontrib>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</creatorcontrib><description>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-020-05206-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Anticyclones ; Atmospheric precipitations ; China ; Climatology ; Debris flow ; Disasters ; Earth and Environmental Science ; Earth Sciences ; East Asia ; Geophysics/Geodesy ; Landslides ; Mountains ; Natural disasters ; Oceanography ; Oceans ; Planetary waves ; Positive feedback ; Precipitation ; Rain ; Rain and rainfall ; Rainfall ; River valleys ; Rivers ; Rossby waves ; Russia ; Sea surface ; Sea surface temperature ; Sea surface temperature anomalies ; Snow ; Snow-water equivalent ; Soil ; South China Sea ; Spring ; Spring (season) ; Summer ; Summer rainfall ; Surface temperature ; Temperature anomalies ; Temperature gradients ; Tropical climate ; Troposphere ; Water vapor ; Water vapor transport ; Water vapour ; Wave packets ; Wave propagation</subject><ispartof>Climate dynamics, 2020-04, Vol.54 (7-8), p.3803-3818</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</citedby><cites>FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-020-05206-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-020-05206-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shen, Haibo</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Li, Jingyi</creatorcontrib><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</description><subject>Anomalies</subject><subject>Anticyclones</subject><subject>Atmospheric precipitations</subject><subject>China</subject><subject>Climatology</subject><subject>Debris flow</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>East Asia</subject><subject>Geophysics/Geodesy</subject><subject>Landslides</subject><subject>Mountains</subject><subject>Natural disasters</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Planetary waves</subject><subject>Positive feedback</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>River valleys</subject><subject>Rivers</subject><subject>Rossby waves</subject><subject>Russia</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Snow</subject><subject>Snow-water equivalent</subject><subject>Soil</subject><subject>South China Sea</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>Summer rainfall</subject><subject>Surface temperature</subject><subject>Temperature anomalies</subject><subject>Temperature gradients</subject><subject>Tropical climate</subject><subject>Troposphere</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LwzAUhoMoOKd_wKuAIHjRmY-2SS5l-DFQBKfXIW3TLaNNZpKi_nujFXQ3kosDJ8-TnOQF4BSjGUaIXQaEKCcZIihDBUFlVuyBCc5panGR74MJEhRlrGDFITgKYYMQzktGJuBh0W9VHaFrYaeihmHrjV3Bpam0N8rCYN0bdKkOfa899MrYVnUdNBYu3RDX2Vzb6FUH52tj1TE4SLtBn_zUKXi5uX6e32X3j7eL-dV9VueExqwVlSoEF4RrIgoiCKtI23AheKVwwyrO60Y1jNcEq7apcN4QwSosMBNYqxzRKTgbz9169zroEOXGDd6mKyWhvCwZ5aJM1GykVqrTMg3u0qR1Wo3uTe2sbk3qX5VYlCWiAifhYkdITNTvcaWGEORi-bTLnv9h11p1cR1cN0TjbNgFyQjW3oXgdSvTF_fKf0iM5Fd4cgxPpvDkd3iySBIdpTEP7X8f-I_1CbiimZw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shen, Haibo</creator><creator>Li, Fei</creator><creator>He, Shengping</creator><creator>Orsolini, Yvan J.</creator><creator>Li, Jingyi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Impact of late spring Siberian snow on summer rainfall in South-Central China</title><author>Shen, Haibo ; Li, Fei ; He, Shengping ; Orsolini, Yvan J. ; Li, Jingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-f9ba598928e2952927b2fd8998ba1d7b88cdad78c21afdb14d297b191791ea403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anticyclones</topic><topic>Atmospheric precipitations</topic><topic>China</topic><topic>Climatology</topic><topic>Debris flow</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>East Asia</topic><topic>Geophysics/Geodesy</topic><topic>Landslides</topic><topic>Mountains</topic><topic>Natural disasters</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Planetary waves</topic><topic>Positive feedback</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>River valleys</topic><topic>Rivers</topic><topic>Rossby waves</topic><topic>Russia</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Snow</topic><topic>Snow-water equivalent</topic><topic>Soil</topic><topic>South China Sea</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>Summer rainfall</topic><topic>Surface temperature</topic><topic>Temperature anomalies</topic><topic>Temperature gradients</topic><topic>Tropical climate</topic><topic>Troposphere</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Haibo</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><creatorcontrib>Orsolini, Yvan J.</creatorcontrib><creatorcontrib>Li, Jingyi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Haibo</au><au>Li, Fei</au><au>He, Shengping</au><au>Orsolini, Yvan J.</au><au>Li, Jingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of late spring Siberian snow on summer rainfall in South-Central China</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>54</volume><issue>7-8</issue><spage>3803</spage><epage>3818</epage><pages>3803-3818</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-020-05206-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2020-04, Vol.54 (7-8), p.3803-3818 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2386673896 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anomalies Anticyclones Atmospheric precipitations China Climatology Debris flow Disasters Earth and Environmental Science Earth Sciences East Asia Geophysics/Geodesy Landslides Mountains Natural disasters Oceanography Oceans Planetary waves Positive feedback Precipitation Rain Rain and rainfall Rainfall River valleys Rivers Rossby waves Russia Sea surface Sea surface temperature Sea surface temperature anomalies Snow Snow-water equivalent Soil South China Sea Spring Spring (season) Summer Summer rainfall Surface temperature Temperature anomalies Temperature gradients Tropical climate Troposphere Water vapor Water vapor transport Water vapour Wave packets Wave propagation |
title | Impact of late spring Siberian snow on summer rainfall in South-Central China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20late%20spring%20Siberian%20snow%20on%20summer%20rainfall%20in%20South-Central%20China&rft.jtitle=Climate%20dynamics&rft.au=Shen,%20Haibo&rft.date=2020-04-01&rft.volume=54&rft.issue=7-8&rft.spage=3803&rft.epage=3818&rft.pages=3803-3818&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-020-05206-5&rft_dat=%3Cgale_proqu%3EA619660391%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386673896&rft_id=info:pmid/&rft_galeid=A619660391&rfr_iscdi=true |