Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)

Cloud service providers should be able to predict the future states of their infrastructure in order to avoid any violation of Service Level Agreement. This becomes more complex when vendors have to deal with services from various providers in multi-clouds. As a result, QoS prediction can significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing 2020-04, Vol.102 (4), p.923-949
Hauptverfasser: Keshavarzi, Amin, Toroghi Haghighat, Abolfazl, Bohlouli, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 949
container_issue 4
container_start_page 923
container_title Computing
container_volume 102
creator Keshavarzi, Amin
Toroghi Haghighat, Abolfazl
Bohlouli, Mahdi
description Cloud service providers should be able to predict the future states of their infrastructure in order to avoid any violation of Service Level Agreement. This becomes more complex when vendors have to deal with services from various providers in multi-clouds. As a result, QoS prediction can significantly support service providers in a better understanding of their resources future states. Users should also be very well aware of their resource needs, as well as the Quality of Service relative values. This paper proposes a hybrid approach to the prediction of the future value of the QoS features. The hybrid approach uses a modified version of k-medoids algorithm for the clustering of large time-series datasets, as well as a proposed algorithm inspired from the lazy learning and lower bound Dynamic Time Warping (LB-Keogh) for pruned DTW computations. The proposed method in this manuscript is a shape-based QoS prediction with a novel pre-processing method, which fulfills the missing data with statistically semi-real data. In order to solve the cold start problem, we proposed new algorithm based on the DTW Barycenter Averaging (DBA) algorithm. The results showed that our predicted values are very close to real values and achieve only 0.35 of the normalized mean absolute error rate, on average, for the WSDream dataset and 0.07 for the Alibaba dataset.
doi_str_mv 10.1007/s00607-019-00747-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386673163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386673163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fd4a4966c765e170358973ed5e16d4b80e5e90b644fd7666a80f6a34f603a7163</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAix6iL0022fUmpf4BQYsK3kK6ybapu9mabJH10xtdwZunx8BvZniD0DGFcwogLyKAAEmAFiRJLkm_g0aUM0EyyOQuGgFQIDzPXvfRQYxrAJiwvBih5cyvtC-twZ1rLNEfOlg8b5_wJljjys61HjuPm23dOVLW7dZcYo1X_SI4g99IY03rTMTaG1zrzx7XVgfv_BLrzSa0ulzh03n7OD07RHuVrqM9-r1j9HI9e57ekvuHm7vp1T0pGS06UhmueSFEKUVmqQSW5YVk1iQhDF_kYDNbwEJwXhkphNA5VEIzXglgWlLBxuhkyE3t71sbO7Vut8GnSpUeFkKyBCVqMlBlaGMMtlKb4BodekVBfQ-qhkFVGlT9DKr6ZGKDKSbYL234i_7H9QUqPHhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386673163</pqid></control><display><type>article</type><title>Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Keshavarzi, Amin ; Toroghi Haghighat, Abolfazl ; Bohlouli, Mahdi</creator><creatorcontrib>Keshavarzi, Amin ; Toroghi Haghighat, Abolfazl ; Bohlouli, Mahdi</creatorcontrib><description>Cloud service providers should be able to predict the future states of their infrastructure in order to avoid any violation of Service Level Agreement. This becomes more complex when vendors have to deal with services from various providers in multi-clouds. As a result, QoS prediction can significantly support service providers in a better understanding of their resources future states. Users should also be very well aware of their resource needs, as well as the Quality of Service relative values. This paper proposes a hybrid approach to the prediction of the future value of the QoS features. The hybrid approach uses a modified version of k-medoids algorithm for the clustering of large time-series datasets, as well as a proposed algorithm inspired from the lazy learning and lower bound Dynamic Time Warping (LB-Keogh) for pruned DTW computations. The proposed method in this manuscript is a shape-based QoS prediction with a novel pre-processing method, which fulfills the missing data with statistically semi-real data. In order to solve the cold start problem, we proposed new algorithm based on the DTW Barycenter Averaging (DBA) algorithm. The results showed that our predicted values are very close to real values and achieve only 0.35 of the normalized mean absolute error rate, on average, for the WSDream dataset and 0.07 for the Alibaba dataset.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-019-00747-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Center of gravity ; Cloud computing ; Clustering ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Datasets ; Information Systems Applications (incl.Internet) ; Lower bounds ; Machine learning ; Missing data ; Quality of service ; Software Engineering</subject><ispartof>Computing, 2020-04, Vol.102 (4), p.923-949</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fd4a4966c765e170358973ed5e16d4b80e5e90b644fd7666a80f6a34f603a7163</citedby><cites>FETCH-LOGICAL-c319t-fd4a4966c765e170358973ed5e16d4b80e5e90b644fd7666a80f6a34f603a7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-019-00747-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-019-00747-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Keshavarzi, Amin</creatorcontrib><creatorcontrib>Toroghi Haghighat, Abolfazl</creatorcontrib><creatorcontrib>Bohlouli, Mahdi</creatorcontrib><title>Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)</title><title>Computing</title><addtitle>Computing</addtitle><description>Cloud service providers should be able to predict the future states of their infrastructure in order to avoid any violation of Service Level Agreement. This becomes more complex when vendors have to deal with services from various providers in multi-clouds. As a result, QoS prediction can significantly support service providers in a better understanding of their resources future states. Users should also be very well aware of their resource needs, as well as the Quality of Service relative values. This paper proposes a hybrid approach to the prediction of the future value of the QoS features. The hybrid approach uses a modified version of k-medoids algorithm for the clustering of large time-series datasets, as well as a proposed algorithm inspired from the lazy learning and lower bound Dynamic Time Warping (LB-Keogh) for pruned DTW computations. The proposed method in this manuscript is a shape-based QoS prediction with a novel pre-processing method, which fulfills the missing data with statistically semi-real data. In order to solve the cold start problem, we proposed new algorithm based on the DTW Barycenter Averaging (DBA) algorithm. The results showed that our predicted values are very close to real values and achieve only 0.35 of the normalized mean absolute error rate, on average, for the WSDream dataset and 0.07 for the Alibaba dataset.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Center of gravity</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Lower bounds</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Quality of service</subject><subject>Software Engineering</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwFPAix6iL0022fUmpf4BQYsK3kK6ybapu9mabJH10xtdwZunx8BvZniD0DGFcwogLyKAAEmAFiRJLkm_g0aUM0EyyOQuGgFQIDzPXvfRQYxrAJiwvBih5cyvtC-twZ1rLNEfOlg8b5_wJljjys61HjuPm23dOVLW7dZcYo1X_SI4g99IY03rTMTaG1zrzx7XVgfv_BLrzSa0ulzh03n7OD07RHuVrqM9-r1j9HI9e57ekvuHm7vp1T0pGS06UhmueSFEKUVmqQSW5YVk1iQhDF_kYDNbwEJwXhkphNA5VEIzXglgWlLBxuhkyE3t71sbO7Vut8GnSpUeFkKyBCVqMlBlaGMMtlKb4BodekVBfQ-qhkFVGlT9DKr6ZGKDKSbYL234i_7H9QUqPHhK</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Keshavarzi, Amin</creator><creator>Toroghi Haghighat, Abolfazl</creator><creator>Bohlouli, Mahdi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)</title><author>Keshavarzi, Amin ; Toroghi Haghighat, Abolfazl ; Bohlouli, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fd4a4966c765e170358973ed5e16d4b80e5e90b644fd7666a80f6a34f603a7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Center of gravity</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Lower bounds</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Quality of service</topic><topic>Software Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarzi, Amin</creatorcontrib><creatorcontrib>Toroghi Haghighat, Abolfazl</creatorcontrib><creatorcontrib>Bohlouli, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarzi, Amin</au><au>Toroghi Haghighat, Abolfazl</au><au>Bohlouli, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>923</spage><epage>949</epage><pages>923-949</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Cloud service providers should be able to predict the future states of their infrastructure in order to avoid any violation of Service Level Agreement. This becomes more complex when vendors have to deal with services from various providers in multi-clouds. As a result, QoS prediction can significantly support service providers in a better understanding of their resources future states. Users should also be very well aware of their resource needs, as well as the Quality of Service relative values. This paper proposes a hybrid approach to the prediction of the future value of the QoS features. The hybrid approach uses a modified version of k-medoids algorithm for the clustering of large time-series datasets, as well as a proposed algorithm inspired from the lazy learning and lower bound Dynamic Time Warping (LB-Keogh) for pruned DTW computations. The proposed method in this manuscript is a shape-based QoS prediction with a novel pre-processing method, which fulfills the missing data with statistically semi-real data. In order to solve the cold start problem, we proposed new algorithm based on the DTW Barycenter Averaging (DBA) algorithm. The results showed that our predicted values are very close to real values and achieve only 0.35 of the normalized mean absolute error rate, on average, for the WSDream dataset and 0.07 for the Alibaba dataset.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-019-00747-y</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-485X
ispartof Computing, 2020-04, Vol.102 (4), p.923-949
issn 0010-485X
1436-5057
language eng
recordid cdi_proquest_journals_2386673163
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Center of gravity
Cloud computing
Clustering
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Datasets
Information Systems Applications (incl.Internet)
Lower bounds
Machine learning
Missing data
Quality of service
Software Engineering
title Enhanced time-aware QoS prediction in multi-cloud: a hybrid k-medoids and lazy learning approach (QoPC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20time-aware%20QoS%20prediction%20in%20multi-cloud:%20a%20hybrid%20k-medoids%20and%20lazy%20learning%20approach%20(QoPC)&rft.jtitle=Computing&rft.au=Keshavarzi,%20Amin&rft.date=2020-04-01&rft.volume=102&rft.issue=4&rft.spage=923&rft.epage=949&rft.pages=923-949&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-019-00747-y&rft_dat=%3Cproquest_cross%3E2386673163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386673163&rft_id=info:pmid/&rfr_iscdi=true