NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System

Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-20
Hauptverfasser: Lin, Hui, Dong, Danyang, Yu, Yi, Chu, Pengzi, Yuan, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Lin, Hui
Dong, Danyang
Yu, Yi
Chu, Pengzi
Yuan, Jianjun
description Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.
doi_str_mv 10.1155/2020/3731749
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386134907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386134907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtaPm2dZ8KJodGe_khxrtTWgttAK3sKaTDTS7NbNRql_wL9tSgsePc0MPLwDbxAcAb0EkPKKUUaveMQhEslW0AOpeChBRNvdTpkIgfHn3WCvad4pZSAh7gU_j9NRP0zT8Fo3WJCJdrpGj47MWlOZV_KA_s0WRJuCjB5O4QLONvIGP3FuFzUaT2xJhu3395Kkdd0aJJP0hgys8c7O511UaR3pt97W2lc5mTldGTJeoOtOa8h02XisD4KdUs8bPNzM_eBpeDsb3IX341E66N-HOVfUh6gY45FQMmKSK1FInceJijlnEcg8ZqB4AixXirIkVy9aU6lBJLJQWEbxi-D7wck6d-HsR4uNz95t60z3MmM8VsBFQqNOXaxV7mzTOCyzhatq7ZYZ0GxVdbaqOttU3fHzNX-rTKG_qv_08VpjZ7DUfxoSoRjlvw9FhME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386134907</pqid></control><display><type>article</type><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun</creator><contributor>Gasparetto, Alessandro ; Alessandro Gasparetto</contributor><creatorcontrib>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun ; Gasparetto, Alessandro ; Alessandro Gasparetto</creatorcontrib><description>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3731749</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Automatic control ; Control algorithms ; Controllers ; Fuzzy control ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Integrated approach ; Mathematical models ; Mathematical problems ; Neural networks ; Optimization ; Parameters ; Proportional integral derivative ; Simulation ; Tuning</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-20</ispartof><rights>Copyright © 2020 Pengzi Chu et al.</rights><rights>Copyright © 2020 Pengzi Chu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</citedby><cites>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</cites><orcidid>0000-0002-1058-8376 ; 0000-0003-1405-3528 ; 0000-0001-9947-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Gasparetto, Alessandro</contributor><contributor>Alessandro Gasparetto</contributor><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Dong, Danyang</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Chu, Pengzi</creatorcontrib><creatorcontrib>Yuan, Jianjun</creatorcontrib><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><title>Mathematical problems in engineering</title><description>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</description><subject>Accuracy</subject><subject>Automatic control</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Fuzzy control</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Integrated approach</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Proportional integral derivative</subject><subject>Simulation</subject><subject>Tuning</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuAgCtaPm2dZ8KJodGe_khxrtTWgttAK3sKaTDTS7NbNRql_wL9tSgsePc0MPLwDbxAcAb0EkPKKUUaveMQhEslW0AOpeChBRNvdTpkIgfHn3WCvad4pZSAh7gU_j9NRP0zT8Fo3WJCJdrpGj47MWlOZV_KA_s0WRJuCjB5O4QLONvIGP3FuFzUaT2xJhu3395Kkdd0aJJP0hgys8c7O511UaR3pt97W2lc5mTldGTJeoOtOa8h02XisD4KdUs8bPNzM_eBpeDsb3IX341E66N-HOVfUh6gY45FQMmKSK1FInceJijlnEcg8ZqB4AixXirIkVy9aU6lBJLJQWEbxi-D7wck6d-HsR4uNz95t60z3MmM8VsBFQqNOXaxV7mzTOCyzhatq7ZYZ0GxVdbaqOttU3fHzNX-rTKG_qv_08VpjZ7DUfxoSoRjlvw9FhME</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lin, Hui</creator><creator>Dong, Danyang</creator><creator>Yu, Yi</creator><creator>Chu, Pengzi</creator><creator>Yuan, Jianjun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1058-8376</orcidid><orcidid>https://orcid.org/0000-0003-1405-3528</orcidid><orcidid>https://orcid.org/0000-0001-9947-8124</orcidid></search><sort><creationdate>2020</creationdate><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><author>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Automatic control</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Fuzzy control</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Integrated approach</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Proportional integral derivative</topic><topic>Simulation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Dong, Danyang</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Chu, Pengzi</creatorcontrib><creatorcontrib>Yuan, Jianjun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hui</au><au>Dong, Danyang</au><au>Yu, Yi</au><au>Chu, Pengzi</au><au>Yuan, Jianjun</au><au>Gasparetto, Alessandro</au><au>Alessandro Gasparetto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3731749</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1058-8376</orcidid><orcidid>https://orcid.org/0000-0003-1405-3528</orcidid><orcidid>https://orcid.org/0000-0001-9947-8124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-20
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2386134907
source Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Accuracy
Automatic control
Control algorithms
Controllers
Fuzzy control
Fuzzy sets
Fuzzy systems
Genetic algorithms
Integrated approach
Mathematical models
Mathematical problems
Neural networks
Optimization
Parameters
Proportional integral derivative
Simulation
Tuning
title NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NSGA-II-Based%20Parameter%20Tuning%20Method%20and%20GM(1,1)-Based%20Development%20of%20Fuzzy%20Immune%20PID%20Controller%20for%20Automatic%20Train%20Operation%20System&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lin,%20Hui&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3731749&rft_dat=%3Cproquest_cross%3E2386134907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386134907&rft_id=info:pmid/&rfr_iscdi=true