NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System
Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method fo...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-20 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Lin, Hui Dong, Danyang Yu, Yi Chu, Pengzi Yuan, Jianjun |
description | Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods. |
doi_str_mv | 10.1155/2020/3731749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386134907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386134907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtaPm2dZ8KJodGe_khxrtTWgttAK3sKaTDTS7NbNRql_wL9tSgsePc0MPLwDbxAcAb0EkPKKUUaveMQhEslW0AOpeChBRNvdTpkIgfHn3WCvad4pZSAh7gU_j9NRP0zT8Fo3WJCJdrpGj47MWlOZV_KA_s0WRJuCjB5O4QLONvIGP3FuFzUaT2xJhu3395Kkdd0aJJP0hgys8c7O511UaR3pt97W2lc5mTldGTJeoOtOa8h02XisD4KdUs8bPNzM_eBpeDsb3IX341E66N-HOVfUh6gY45FQMmKSK1FInceJijlnEcg8ZqB4AixXirIkVy9aU6lBJLJQWEbxi-D7wck6d-HsR4uNz95t60z3MmM8VsBFQqNOXaxV7mzTOCyzhatq7ZYZ0GxVdbaqOttU3fHzNX-rTKG_qv_08VpjZ7DUfxoSoRjlvw9FhME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386134907</pqid></control><display><type>article</type><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun</creator><contributor>Gasparetto, Alessandro ; Alessandro Gasparetto</contributor><creatorcontrib>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun ; Gasparetto, Alessandro ; Alessandro Gasparetto</creatorcontrib><description>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3731749</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Automatic control ; Control algorithms ; Controllers ; Fuzzy control ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Integrated approach ; Mathematical models ; Mathematical problems ; Neural networks ; Optimization ; Parameters ; Proportional integral derivative ; Simulation ; Tuning</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-20</ispartof><rights>Copyright © 2020 Pengzi Chu et al.</rights><rights>Copyright © 2020 Pengzi Chu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</citedby><cites>FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</cites><orcidid>0000-0002-1058-8376 ; 0000-0003-1405-3528 ; 0000-0001-9947-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Gasparetto, Alessandro</contributor><contributor>Alessandro Gasparetto</contributor><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Dong, Danyang</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Chu, Pengzi</creatorcontrib><creatorcontrib>Yuan, Jianjun</creatorcontrib><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><title>Mathematical problems in engineering</title><description>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</description><subject>Accuracy</subject><subject>Automatic control</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Fuzzy control</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Integrated approach</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Proportional integral derivative</subject><subject>Simulation</subject><subject>Tuning</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuAgCtaPm2dZ8KJodGe_khxrtTWgttAK3sKaTDTS7NbNRql_wL9tSgsePc0MPLwDbxAcAb0EkPKKUUaveMQhEslW0AOpeChBRNvdTpkIgfHn3WCvad4pZSAh7gU_j9NRP0zT8Fo3WJCJdrpGj47MWlOZV_KA_s0WRJuCjB5O4QLONvIGP3FuFzUaT2xJhu3395Kkdd0aJJP0hgys8c7O511UaR3pt97W2lc5mTldGTJeoOtOa8h02XisD4KdUs8bPNzM_eBpeDsb3IX341E66N-HOVfUh6gY45FQMmKSK1FInceJijlnEcg8ZqB4AixXirIkVy9aU6lBJLJQWEbxi-D7wck6d-HsR4uNz95t60z3MmM8VsBFQqNOXaxV7mzTOCyzhatq7ZYZ0GxVdbaqOttU3fHzNX-rTKG_qv_08VpjZ7DUfxoSoRjlvw9FhME</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lin, Hui</creator><creator>Dong, Danyang</creator><creator>Yu, Yi</creator><creator>Chu, Pengzi</creator><creator>Yuan, Jianjun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1058-8376</orcidid><orcidid>https://orcid.org/0000-0003-1405-3528</orcidid><orcidid>https://orcid.org/0000-0001-9947-8124</orcidid></search><sort><creationdate>2020</creationdate><title>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</title><author>Lin, Hui ; Dong, Danyang ; Yu, Yi ; Chu, Pengzi ; Yuan, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e62237465725364d5ac8968332715c82163912c66029c6baa05a1495d6ef78b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Automatic control</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Fuzzy control</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Integrated approach</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Proportional integral derivative</topic><topic>Simulation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Dong, Danyang</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Chu, Pengzi</creatorcontrib><creatorcontrib>Yuan, Jianjun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hui</au><au>Dong, Danyang</au><au>Yu, Yi</au><au>Chu, Pengzi</au><au>Yuan, Jianjun</au><au>Gasparetto, Alessandro</au><au>Alessandro Gasparetto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3731749</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1058-8376</orcidid><orcidid>https://orcid.org/0000-0003-1405-3528</orcidid><orcidid>https://orcid.org/0000-0001-9947-8124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-20 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2386134907 |
source | Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Accuracy Automatic control Control algorithms Controllers Fuzzy control Fuzzy sets Fuzzy systems Genetic algorithms Integrated approach Mathematical models Mathematical problems Neural networks Optimization Parameters Proportional integral derivative Simulation Tuning |
title | NSGA-II-Based Parameter Tuning Method and GM(1,1)-Based Development of Fuzzy Immune PID Controller for Automatic Train Operation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NSGA-II-Based%20Parameter%20Tuning%20Method%20and%20GM(1,1)-Based%20Development%20of%20Fuzzy%20Immune%20PID%20Controller%20for%20Automatic%20Train%20Operation%20System&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lin,%20Hui&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3731749&rft_dat=%3Cproquest_cross%3E2386134907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386134907&rft_id=info:pmid/&rfr_iscdi=true |