Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation

This manuscript introduces two new chaotic oscillators based on autonomous Boolean networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs do not have fixed points, and therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-04, Vol.12 (4), p.506
Hauptverfasser: Munoz-Pacheco, Jesus M., García-Chávez, Tonatiuh, Gonzalez-Diaz, Victor R., de La Fuente-Cortes, Gisela, del Carmen Gómez-Pavón, Luz del Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 506
container_title Symmetry (Basel)
container_volume 12
creator Munoz-Pacheco, Jesus M.
García-Chávez, Tonatiuh
Gonzalez-Diaz, Victor R.
de La Fuente-Cortes, Gisela
del Carmen Gómez-Pavón, Luz del Carmen
description This manuscript introduces two new chaotic oscillators based on autonomous Boolean networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators, is insensitive to incommensurate time-delays paths. As a result, they can be implemented using distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors of those implementations are analyzed using time-series, time-lag embedded attractors, frequency spectra, Poincaré maps, and Lyapunov exponents.
doi_str_mv 10.3390/sym12040506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386109334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386109334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-bb64f3f96eb1d17edde940c52ed9a8d6441f79df8d61ed6bf9c0618a038670fd3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhSMEElXpxB-wxIgCduw8PJaWR6WqXcIcOfa16iqxg-2o6sJvJ6gMnOWe4Tv3SCdJ7gl-opTj53DuSYYZznFxlcwyXNK04pxd__O3ySKEI56U45wVeJZ81yeHdnBCyyneQ_RGohfnOhAWrQ7CBbQP0nSdiM4HdDLxgHYOrWEAq8BKQM6ijZVuytowehEB1aaHdA2dOAckrEL1AYxHK-PlaCLa9EMHExxFNM7eJTdadAEWf3eefL691quPdLt_36yW21RmvIpp2xZMU80LaIkiJSgFnGGZZ6C4qFTBGNElV3qyBFTRai5xQSqBaVWUWCs6Tx4ufwfvvkYIsTm60dupsskmhmBOKZuoxwslvQvBg24Gb3rhzw3Bze_Gzb-N6Q-SCXED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386109334</pqid></control><display><type>article</type><title>Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Munoz-Pacheco, Jesus M. ; García-Chávez, Tonatiuh ; Gonzalez-Diaz, Victor R. ; de La Fuente-Cortes, Gisela ; del Carmen Gómez-Pavón, Luz del Carmen</creator><creatorcontrib>Munoz-Pacheco, Jesus M. ; García-Chávez, Tonatiuh ; Gonzalez-Diaz, Victor R. ; de La Fuente-Cortes, Gisela ; del Carmen Gómez-Pavón, Luz del Carmen</creatorcontrib><description>This manuscript introduces two new chaotic oscillators based on autonomous Boolean networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators, is insensitive to incommensurate time-delays paths. As a result, they can be implemented using distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors of those implementations are analyzed using time-series, time-lag embedded attractors, frequency spectra, Poincaré maps, and Lyapunov exponents.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12040506</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Asymmetry ; Behavior ; Boolean ; Boolean algebra ; Boolean functions ; Chaos theory ; Circuits ; CMOS ; Electronic circuits ; Field programmable gate arrays ; Frequency spectrum ; Gates (circuits) ; Integrated circuits ; Liapunov exponents ; Logic ; Oscillators ; Poincare maps ; Time dependence</subject><ispartof>Symmetry (Basel), 2020-04, Vol.12 (4), p.506</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-bb64f3f96eb1d17edde940c52ed9a8d6441f79df8d61ed6bf9c0618a038670fd3</citedby><cites>FETCH-LOGICAL-c298t-bb64f3f96eb1d17edde940c52ed9a8d6441f79df8d61ed6bf9c0618a038670fd3</cites><orcidid>0000-0001-7505-9961 ; 0000-0002-9106-6982 ; 0000-0002-2931-8368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Munoz-Pacheco, Jesus M.</creatorcontrib><creatorcontrib>García-Chávez, Tonatiuh</creatorcontrib><creatorcontrib>Gonzalez-Diaz, Victor R.</creatorcontrib><creatorcontrib>de La Fuente-Cortes, Gisela</creatorcontrib><creatorcontrib>del Carmen Gómez-Pavón, Luz del Carmen</creatorcontrib><title>Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation</title><title>Symmetry (Basel)</title><description>This manuscript introduces two new chaotic oscillators based on autonomous Boolean networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators, is insensitive to incommensurate time-delays paths. As a result, they can be implemented using distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors of those implementations are analyzed using time-series, time-lag embedded attractors, frequency spectra, Poincaré maps, and Lyapunov exponents.</description><subject>Asymmetry</subject><subject>Behavior</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Chaos theory</subject><subject>Circuits</subject><subject>CMOS</subject><subject>Electronic circuits</subject><subject>Field programmable gate arrays</subject><subject>Frequency spectrum</subject><subject>Gates (circuits)</subject><subject>Integrated circuits</subject><subject>Liapunov exponents</subject><subject>Logic</subject><subject>Oscillators</subject><subject>Poincare maps</subject><subject>Time dependence</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkDtPwzAUhSMEElXpxB-wxIgCduw8PJaWR6WqXcIcOfa16iqxg-2o6sJvJ6gMnOWe4Tv3SCdJ7gl-opTj53DuSYYZznFxlcwyXNK04pxd__O3ySKEI56U45wVeJZ81yeHdnBCyyneQ_RGohfnOhAWrQ7CBbQP0nSdiM4HdDLxgHYOrWEAq8BKQM6ijZVuytowehEB1aaHdA2dOAckrEL1AYxHK-PlaCLa9EMHExxFNM7eJTdadAEWf3eefL691quPdLt_36yW21RmvIpp2xZMU80LaIkiJSgFnGGZZ6C4qFTBGNElV3qyBFTRai5xQSqBaVWUWCs6Tx4ufwfvvkYIsTm60dupsskmhmBOKZuoxwslvQvBg24Gb3rhzw3Bze_Gzb-N6Q-SCXED</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Munoz-Pacheco, Jesus M.</creator><creator>García-Chávez, Tonatiuh</creator><creator>Gonzalez-Diaz, Victor R.</creator><creator>de La Fuente-Cortes, Gisela</creator><creator>del Carmen Gómez-Pavón, Luz del Carmen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7505-9961</orcidid><orcidid>https://orcid.org/0000-0002-9106-6982</orcidid><orcidid>https://orcid.org/0000-0002-2931-8368</orcidid></search><sort><creationdate>20200401</creationdate><title>Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation</title><author>Munoz-Pacheco, Jesus M. ; García-Chávez, Tonatiuh ; Gonzalez-Diaz, Victor R. ; de La Fuente-Cortes, Gisela ; del Carmen Gómez-Pavón, Luz del Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-bb64f3f96eb1d17edde940c52ed9a8d6441f79df8d61ed6bf9c0618a038670fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Behavior</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Chaos theory</topic><topic>Circuits</topic><topic>CMOS</topic><topic>Electronic circuits</topic><topic>Field programmable gate arrays</topic><topic>Frequency spectrum</topic><topic>Gates (circuits)</topic><topic>Integrated circuits</topic><topic>Liapunov exponents</topic><topic>Logic</topic><topic>Oscillators</topic><topic>Poincare maps</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munoz-Pacheco, Jesus M.</creatorcontrib><creatorcontrib>García-Chávez, Tonatiuh</creatorcontrib><creatorcontrib>Gonzalez-Diaz, Victor R.</creatorcontrib><creatorcontrib>de La Fuente-Cortes, Gisela</creatorcontrib><creatorcontrib>del Carmen Gómez-Pavón, Luz del Carmen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munoz-Pacheco, Jesus M.</au><au>García-Chávez, Tonatiuh</au><au>Gonzalez-Diaz, Victor R.</au><au>de La Fuente-Cortes, Gisela</au><au>del Carmen Gómez-Pavón, Luz del Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>506</spage><pages>506-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>This manuscript introduces two new chaotic oscillators based on autonomous Boolean networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators, is insensitive to incommensurate time-delays paths. As a result, they can be implemented using distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors of those implementations are analyzed using time-series, time-lag embedded attractors, frequency spectra, Poincaré maps, and Lyapunov exponents.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12040506</doi><orcidid>https://orcid.org/0000-0001-7505-9961</orcidid><orcidid>https://orcid.org/0000-0002-9106-6982</orcidid><orcidid>https://orcid.org/0000-0002-2931-8368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2020-04, Vol.12 (4), p.506
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_2386109334
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymmetry
Behavior
Boolean
Boolean algebra
Boolean functions
Chaos theory
Circuits
CMOS
Electronic circuits
Field programmable gate arrays
Frequency spectrum
Gates (circuits)
Integrated circuits
Liapunov exponents
Logic
Oscillators
Poincare maps
Time dependence
title Two New Asymmetric Boolean Chaos Oscillators with No Dependence on Incommensurate Time-Delays and Their Circuit Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20New%20Asymmetric%20Boolean%20Chaos%20Oscillators%20with%20No%20Dependence%20on%20Incommensurate%20Time-Delays%20and%20Their%20Circuit%20Implementation&rft.jtitle=Symmetry%20(Basel)&rft.au=Munoz-Pacheco,%20Jesus%20M.&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=506&rft.pages=506-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12040506&rft_dat=%3Cproquest_cross%3E2386109334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386109334&rft_id=info:pmid/&rfr_iscdi=true