A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms

In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-03, Vol.79 (11-12), p.8197-8212
Hauptverfasser: Meena, Kunj Bihari, Tyagi, Vipin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8212
container_issue 11-12
container_start_page 8197
container_title Multimedia tools and applications
container_volume 79
creator Meena, Kunj Bihari
Tyagi, Vipin
description In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.
doi_str_mv 10.1007/s11042-019-08343-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385998807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385998807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4hxw_pSkx2ligATiAucobZ2tU5eOpJvUb0-gSNw42bLee7Z_hFxzuOUA-i5xDkow4CUDI5VkcEJmvNCSaS34ae6lAaYL4OfkIqUtAL8vhJqRtKCbsYptQ-t-P7Jdf0Ta7twaqe_jGuNIGxywHto-0Fw3of08IK1cwobm0ao_xBYje8WuawN1oaGpdl3OCEcXWxcG6tENh4h0iC6kHLpLl-TMuy7h1W-dk4_Vw_vyib28PT4vFy-slrwcWGOwRsULL4QyonJlrWuD4EwFkgvIf8vCS1C-8L5U2njdFLJBVE6XuvJKzsnNlLuPfb46DXabzw15pRXSFGVpDOisEpOqjn1KEb3dx0wgjpaD_YZrJ7g2w7U_cC1kk5xMKYtD5vQX_Y_rC520fjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385998807</pqid></control><display><type>article</type><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><source>SpringerLink Journals</source><creator>Meena, Kunj Bihari ; Tyagi, Vipin</creator><creatorcontrib>Meena, Kunj Bihari ; Tyagi, Vipin</creatorcontrib><description>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08343-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Feature extraction ; Forgery ; Geometric transformation ; Image detection ; Invariants ; Mellin transforms ; Multimedia Information Systems ; Post-production processing ; Special Purpose and Application-Based Systems ; Texture</subject><ispartof>Multimedia tools and applications, 2020-03, Vol.79 (11-12), p.8197-8212</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</citedby><cites>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</cites><orcidid>0000-0003-4994-3686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08343-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08343-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meena, Kunj Bihari</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Forgery</subject><subject>Geometric transformation</subject><subject>Image detection</subject><subject>Invariants</subject><subject>Mellin transforms</subject><subject>Multimedia Information Systems</subject><subject>Post-production processing</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Texture</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThF4hxw_pSkx2ligATiAucobZ2tU5eOpJvUb0-gSNw42bLee7Z_hFxzuOUA-i5xDkow4CUDI5VkcEJmvNCSaS34ae6lAaYL4OfkIqUtAL8vhJqRtKCbsYptQ-t-P7Jdf0Ta7twaqe_jGuNIGxywHto-0Fw3of08IK1cwobm0ao_xBYje8WuawN1oaGpdl3OCEcXWxcG6tENh4h0iC6kHLpLl-TMuy7h1W-dk4_Vw_vyib28PT4vFy-slrwcWGOwRsULL4QyonJlrWuD4EwFkgvIf8vCS1C-8L5U2njdFLJBVE6XuvJKzsnNlLuPfb46DXabzw15pRXSFGVpDOisEpOqjn1KEb3dx0wgjpaD_YZrJ7g2w7U_cC1kk5xMKYtD5vQX_Y_rC520fjc</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Meena, Kunj Bihari</creator><creator>Tyagi, Vipin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4994-3686</orcidid></search><sort><creationdate>20200301</creationdate><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><author>Meena, Kunj Bihari ; Tyagi, Vipin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Forgery</topic><topic>Geometric transformation</topic><topic>Image detection</topic><topic>Invariants</topic><topic>Mellin transforms</topic><topic>Multimedia Information Systems</topic><topic>Post-production processing</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, Kunj Bihari</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, Kunj Bihari</au><au>Tyagi, Vipin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>79</volume><issue>11-12</issue><spage>8197</spage><epage>8212</epage><pages>8197-8212</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08343-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4994-3686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-03, Vol.79 (11-12), p.8197-8212
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2385998807
source SpringerLink Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Feature extraction
Forgery
Geometric transformation
Image detection
Invariants
Mellin transforms
Multimedia Information Systems
Post-production processing
Special Purpose and Application-Based Systems
Texture
title A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20copy-move%20image%20forgery%20detection%20technique%20based%20on%20Fourier-Mellin%20and%20scale%20invariant%20feature%20transforms&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Meena,%20Kunj%20Bihari&rft.date=2020-03-01&rft.volume=79&rft.issue=11-12&rft.spage=8197&rft.epage=8212&rft.pages=8197-8212&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08343-0&rft_dat=%3Cproquest_cross%3E2385998807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385998807&rft_id=info:pmid/&rfr_iscdi=true