A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms
In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rota...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-03, Vol.79 (11-12), p.8197-8212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8212 |
---|---|
container_issue | 11-12 |
container_start_page | 8197 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Meena, Kunj Bihari Tyagi, Vipin |
description | In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time. |
doi_str_mv | 10.1007/s11042-019-08343-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385998807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385998807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4hxw_pSkx2ligATiAucobZ2tU5eOpJvUb0-gSNw42bLee7Z_hFxzuOUA-i5xDkow4CUDI5VkcEJmvNCSaS34ae6lAaYL4OfkIqUtAL8vhJqRtKCbsYptQ-t-P7Jdf0Ta7twaqe_jGuNIGxywHto-0Fw3of08IK1cwobm0ao_xBYje8WuawN1oaGpdl3OCEcXWxcG6tENh4h0iC6kHLpLl-TMuy7h1W-dk4_Vw_vyib28PT4vFy-slrwcWGOwRsULL4QyonJlrWuD4EwFkgvIf8vCS1C-8L5U2njdFLJBVE6XuvJKzsnNlLuPfb46DXabzw15pRXSFGVpDOisEpOqjn1KEb3dx0wgjpaD_YZrJ7g2w7U_cC1kk5xMKYtD5vQX_Y_rC520fjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385998807</pqid></control><display><type>article</type><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><source>SpringerLink Journals</source><creator>Meena, Kunj Bihari ; Tyagi, Vipin</creator><creatorcontrib>Meena, Kunj Bihari ; Tyagi, Vipin</creatorcontrib><description>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08343-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Feature extraction ; Forgery ; Geometric transformation ; Image detection ; Invariants ; Mellin transforms ; Multimedia Information Systems ; Post-production processing ; Special Purpose and Application-Based Systems ; Texture</subject><ispartof>Multimedia tools and applications, 2020-03, Vol.79 (11-12), p.8197-8212</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</citedby><cites>FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</cites><orcidid>0000-0003-4994-3686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08343-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08343-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meena, Kunj Bihari</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Forgery</subject><subject>Geometric transformation</subject><subject>Image detection</subject><subject>Invariants</subject><subject>Mellin transforms</subject><subject>Multimedia Information Systems</subject><subject>Post-production processing</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Texture</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThF4hxw_pSkx2ligATiAucobZ2tU5eOpJvUb0-gSNw42bLee7Z_hFxzuOUA-i5xDkow4CUDI5VkcEJmvNCSaS34ae6lAaYL4OfkIqUtAL8vhJqRtKCbsYptQ-t-P7Jdf0Ta7twaqe_jGuNIGxywHto-0Fw3of08IK1cwobm0ao_xBYje8WuawN1oaGpdl3OCEcXWxcG6tENh4h0iC6kHLpLl-TMuy7h1W-dk4_Vw_vyib28PT4vFy-slrwcWGOwRsULL4QyonJlrWuD4EwFkgvIf8vCS1C-8L5U2njdFLJBVE6XuvJKzsnNlLuPfb46DXabzw15pRXSFGVpDOisEpOqjn1KEb3dx0wgjpaD_YZrJ7g2w7U_cC1kk5xMKYtD5vQX_Y_rC520fjc</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Meena, Kunj Bihari</creator><creator>Tyagi, Vipin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4994-3686</orcidid></search><sort><creationdate>20200301</creationdate><title>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</title><author>Meena, Kunj Bihari ; Tyagi, Vipin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d8ece415f22482ba9c7c8e0a8b0312010035f304f5ff9478f7d53dee4a797bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Forgery</topic><topic>Geometric transformation</topic><topic>Image detection</topic><topic>Invariants</topic><topic>Mellin transforms</topic><topic>Multimedia Information Systems</topic><topic>Post-production processing</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, Kunj Bihari</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, Kunj Bihari</au><au>Tyagi, Vipin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>79</volume><issue>11-12</issue><spage>8197</spage><epage>8212</epage><pages>8197-8212</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08343-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4994-3686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-03, Vol.79 (11-12), p.8197-8212 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2385998807 |
source | SpringerLink Journals |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Feature extraction Forgery Geometric transformation Image detection Invariants Mellin transforms Multimedia Information Systems Post-production processing Special Purpose and Application-Based Systems Texture |
title | A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20copy-move%20image%20forgery%20detection%20technique%20based%20on%20Fourier-Mellin%20and%20scale%20invariant%20feature%20transforms&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Meena,%20Kunj%20Bihari&rft.date=2020-03-01&rft.volume=79&rft.issue=11-12&rft.spage=8197&rft.epage=8212&rft.pages=8197-8212&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08343-0&rft_dat=%3Cproquest_cross%3E2385998807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385998807&rft_id=info:pmid/&rfr_iscdi=true |