In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio
In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2020-04, Vol.60 (4), p.832-840 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 840 |
---|---|
container_issue | 4 |
container_start_page | 832 |
container_title | Polymer engineering and science |
container_volume | 60 |
creator | Su, Juan‐Juan Cui, Chao‐Fan Lin, Yi Yu, Qi‐Hao Wu, Zhong‐Xiao Han, Jian Wang, Ke Fu, Qiang |
description | In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.25342 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385950057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622718377</galeid><sourcerecordid>A622718377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</originalsourceid><addsrcrecordid>eNp1kl2L1DAUhosoOK5e-A8CXgl2Jh9N270ch9UtrLrsqLchzZyMWTJJTVK0--vNWEEHRgIJ78nznnNITlG8JHhJMKarAdySclbRR8WC8Kotac2qx8UCY0ZL1rbt0-JZjPc4s4xfLoqHzqGtSSP6YFTw2vTBWLRNYVRpDICMQ51T_jDIZHoLqIs-SZWMQrfeTkPww2TBweqo7HyxVmaH3uboLqKNdyl4ayFHJvTVROWjSRO6y-n88-KJljbCiz_nRfHl3dXnzXV58-l9t1nflIoTTEsOjew1a3RFFPQVwS3tcVMrljVucUs0VFxJhlWNoZaNwg0FrGslOe2zZBfFqzlvbvf7CDGJez8Gl0sKylp-yTHmzV9qLy0I47RPQapDblmsa0ob0rLmSJVnqH1-giCtd6BNDp_wyzN8Xjs4GHXW8PrEkJkEP9NejjGKbnt3yr75h-3HaBzEvEWz_5bibDmXOn90jAG0GII5yDAJgsVxeEQeHvF7eDK7mtkfub_p_6C4vfo4O34BDWfEaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385950057</pqid></control><display><type>article</type><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><source>Access via Wiley Online Library</source><creator>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</creator><creatorcontrib>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</creatorcontrib><description>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25342</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analysis ; Construction ; Deformation ; Design and construction ; Drag ; Injection molding ; Isotacticity ; Lactic acid ; Mechanical properties ; Morphology ; Polyester fibers ; Polylactic acid ; Polymer blends ; Polymers ; Polypropylene ; Properties ; Rheological properties ; Rheology ; Tensile strength ; Thermoplastics mixing ; Viscosity ; Viscosity ratio ; Viscous drag</subject><ispartof>Polymer engineering and science, 2020-04, Vol.60 (4), p.832-840</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</citedby><cites>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</cites><orcidid>0000-0001-9975-7668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Su, Juan‐Juan</creatorcontrib><creatorcontrib>Cui, Chao‐Fan</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yu, Qi‐Hao</creatorcontrib><creatorcontrib>Wu, Zhong‐Xiao</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><title>Polymer engineering and science</title><description>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</description><subject>Analysis</subject><subject>Construction</subject><subject>Deformation</subject><subject>Design and construction</subject><subject>Drag</subject><subject>Injection molding</subject><subject>Isotacticity</subject><subject>Lactic acid</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Polyester fibers</subject><subject>Polylactic acid</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Tensile strength</subject><subject>Thermoplastics mixing</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Viscous drag</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl2L1DAUhosoOK5e-A8CXgl2Jh9N270ch9UtrLrsqLchzZyMWTJJTVK0--vNWEEHRgIJ78nznnNITlG8JHhJMKarAdySclbRR8WC8Kotac2qx8UCY0ZL1rbt0-JZjPc4s4xfLoqHzqGtSSP6YFTw2vTBWLRNYVRpDICMQ51T_jDIZHoLqIs-SZWMQrfeTkPww2TBweqo7HyxVmaH3uboLqKNdyl4ayFHJvTVROWjSRO6y-n88-KJljbCiz_nRfHl3dXnzXV58-l9t1nflIoTTEsOjew1a3RFFPQVwS3tcVMrljVucUs0VFxJhlWNoZaNwg0FrGslOe2zZBfFqzlvbvf7CDGJez8Gl0sKylp-yTHmzV9qLy0I47RPQapDblmsa0ob0rLmSJVnqH1-giCtd6BNDp_wyzN8Xjs4GHXW8PrEkJkEP9NejjGKbnt3yr75h-3HaBzEvEWz_5bibDmXOn90jAG0GII5yDAJgsVxeEQeHvF7eDK7mtkfub_p_6C4vfo4O34BDWfEaQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Su, Juan‐Juan</creator><creator>Cui, Chao‐Fan</creator><creator>Lin, Yi</creator><creator>Yu, Qi‐Hao</creator><creator>Wu, Zhong‐Xiao</creator><creator>Han, Jian</creator><creator>Wang, Ke</creator><creator>Fu, Qiang</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9975-7668</orcidid></search><sort><creationdate>202004</creationdate><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><author>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Construction</topic><topic>Deformation</topic><topic>Design and construction</topic><topic>Drag</topic><topic>Injection molding</topic><topic>Isotacticity</topic><topic>Lactic acid</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Polyester fibers</topic><topic>Polylactic acid</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Tensile strength</topic><topic>Thermoplastics mixing</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Viscous drag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Juan‐Juan</creatorcontrib><creatorcontrib>Cui, Chao‐Fan</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yu, Qi‐Hao</creatorcontrib><creatorcontrib>Wu, Zhong‐Xiao</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Juan‐Juan</au><au>Cui, Chao‐Fan</au><au>Lin, Yi</au><au>Yu, Qi‐Hao</au><au>Wu, Zhong‐Xiao</au><au>Han, Jian</au><au>Wang, Ke</au><au>Fu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>832</spage><epage>840</epage><pages>832-840</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25342</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9975-7668</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2020-04, Vol.60 (4), p.832-840 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2385950057 |
source | Access via Wiley Online Library |
subjects | Analysis Construction Deformation Design and construction Drag Injection molding Isotacticity Lactic acid Mechanical properties Morphology Polyester fibers Polylactic acid Polymer blends Polymers Polypropylene Properties Rheological properties Rheology Tensile strength Thermoplastics mixing Viscosity Viscosity ratio Viscous drag |
title | In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Microfibril%20Structure%20in%20Incompatible%20Isotactic%20Polypropylene/Polylactic%20Acid%20Blends%20Controlled%20By%20Viscosity%20Ratio&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Su,%20Juan%E2%80%90Juan&rft.date=2020-04&rft.volume=60&rft.issue=4&rft.spage=832&rft.epage=840&rft.pages=832-840&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25342&rft_dat=%3Cgale_proqu%3EA622718377%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385950057&rft_id=info:pmid/&rft_galeid=A622718377&rfr_iscdi=true |