In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio

In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2020-04, Vol.60 (4), p.832-840
Hauptverfasser: Su, Juan‐Juan, Cui, Chao‐Fan, Lin, Yi, Yu, Qi‐Hao, Wu, Zhong‐Xiao, Han, Jian, Wang, Ke, Fu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 840
container_issue 4
container_start_page 832
container_title Polymer engineering and science
container_volume 60
creator Su, Juan‐Juan
Cui, Chao‐Fan
Lin, Yi
Yu, Qi‐Hao
Wu, Zhong‐Xiao
Han, Jian
Wang, Ke
Fu, Qiang
description In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers
doi_str_mv 10.1002/pen.25342
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385950057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622718377</galeid><sourcerecordid>A622718377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</originalsourceid><addsrcrecordid>eNp1kl2L1DAUhosoOK5e-A8CXgl2Jh9N270ch9UtrLrsqLchzZyMWTJJTVK0--vNWEEHRgIJ78nznnNITlG8JHhJMKarAdySclbRR8WC8Kotac2qx8UCY0ZL1rbt0-JZjPc4s4xfLoqHzqGtSSP6YFTw2vTBWLRNYVRpDICMQ51T_jDIZHoLqIs-SZWMQrfeTkPww2TBweqo7HyxVmaH3uboLqKNdyl4ayFHJvTVROWjSRO6y-n88-KJljbCiz_nRfHl3dXnzXV58-l9t1nflIoTTEsOjew1a3RFFPQVwS3tcVMrljVucUs0VFxJhlWNoZaNwg0FrGslOe2zZBfFqzlvbvf7CDGJez8Gl0sKylp-yTHmzV9qLy0I47RPQapDblmsa0ob0rLmSJVnqH1-giCtd6BNDp_wyzN8Xjs4GHXW8PrEkJkEP9NejjGKbnt3yr75h-3HaBzEvEWz_5bibDmXOn90jAG0GII5yDAJgsVxeEQeHvF7eDK7mtkfub_p_6C4vfo4O34BDWfEaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385950057</pqid></control><display><type>article</type><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><source>Access via Wiley Online Library</source><creator>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</creator><creatorcontrib>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</creatorcontrib><description>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25342</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Analysis ; Construction ; Deformation ; Design and construction ; Drag ; Injection molding ; Isotacticity ; Lactic acid ; Mechanical properties ; Morphology ; Polyester fibers ; Polylactic acid ; Polymer blends ; Polymers ; Polypropylene ; Properties ; Rheological properties ; Rheology ; Tensile strength ; Thermoplastics mixing ; Viscosity ; Viscosity ratio ; Viscous drag</subject><ispartof>Polymer engineering and science, 2020-04, Vol.60 (4), p.832-840</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</citedby><cites>FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</cites><orcidid>0000-0001-9975-7668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Su, Juan‐Juan</creatorcontrib><creatorcontrib>Cui, Chao‐Fan</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yu, Qi‐Hao</creatorcontrib><creatorcontrib>Wu, Zhong‐Xiao</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><title>Polymer engineering and science</title><description>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</description><subject>Analysis</subject><subject>Construction</subject><subject>Deformation</subject><subject>Design and construction</subject><subject>Drag</subject><subject>Injection molding</subject><subject>Isotacticity</subject><subject>Lactic acid</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Polyester fibers</subject><subject>Polylactic acid</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Tensile strength</subject><subject>Thermoplastics mixing</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Viscous drag</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl2L1DAUhosoOK5e-A8CXgl2Jh9N270ch9UtrLrsqLchzZyMWTJJTVK0--vNWEEHRgIJ78nznnNITlG8JHhJMKarAdySclbRR8WC8Kotac2qx8UCY0ZL1rbt0-JZjPc4s4xfLoqHzqGtSSP6YFTw2vTBWLRNYVRpDICMQ51T_jDIZHoLqIs-SZWMQrfeTkPww2TBweqo7HyxVmaH3uboLqKNdyl4ayFHJvTVROWjSRO6y-n88-KJljbCiz_nRfHl3dXnzXV58-l9t1nflIoTTEsOjew1a3RFFPQVwS3tcVMrljVucUs0VFxJhlWNoZaNwg0FrGslOe2zZBfFqzlvbvf7CDGJez8Gl0sKylp-yTHmzV9qLy0I47RPQapDblmsa0ob0rLmSJVnqH1-giCtd6BNDp_wyzN8Xjs4GHXW8PrEkJkEP9NejjGKbnt3yr75h-3HaBzEvEWz_5bibDmXOn90jAG0GII5yDAJgsVxeEQeHvF7eDK7mtkfub_p_6C4vfo4O34BDWfEaQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Su, Juan‐Juan</creator><creator>Cui, Chao‐Fan</creator><creator>Lin, Yi</creator><creator>Yu, Qi‐Hao</creator><creator>Wu, Zhong‐Xiao</creator><creator>Han, Jian</creator><creator>Wang, Ke</creator><creator>Fu, Qiang</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9975-7668</orcidid></search><sort><creationdate>202004</creationdate><title>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</title><author>Su, Juan‐Juan ; Cui, Chao‐Fan ; Lin, Yi ; Yu, Qi‐Hao ; Wu, Zhong‐Xiao ; Han, Jian ; Wang, Ke ; Fu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5102-5e7abf37f41ceb41082b076c341c08081fe45ca30c60e6a7c072e0f6ca52ba7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Construction</topic><topic>Deformation</topic><topic>Design and construction</topic><topic>Drag</topic><topic>Injection molding</topic><topic>Isotacticity</topic><topic>Lactic acid</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Polyester fibers</topic><topic>Polylactic acid</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Tensile strength</topic><topic>Thermoplastics mixing</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Viscous drag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Juan‐Juan</creatorcontrib><creatorcontrib>Cui, Chao‐Fan</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yu, Qi‐Hao</creatorcontrib><creatorcontrib>Wu, Zhong‐Xiao</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Juan‐Juan</au><au>Cui, Chao‐Fan</au><au>Lin, Yi</au><au>Yu, Qi‐Hao</au><au>Wu, Zhong‐Xiao</au><au>Han, Jian</au><au>Wang, Ke</au><au>Fu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>832</spage><epage>840</epage><pages>832-840</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In situ microfibril structure can significantly improve the mechanical properties of incompatible blends. In this work, the in situ microfibrils were constructed in isotactic polypropylene/polylactic acid (iPP/PLA) blends by direct injection molding process, and the effect of viscosity ratio on the morphology was systematically analyzed. The results of scanning electron microscope and rheology show that the viscosity ratio plays a decisive role in the formation of in situ microfibrils. When the viscosity ratio of PLA/iPP is near 1, deformation and microfibrillation of PLA particles can be conducted due to the larger and more uniform distributed PLA domains as well as stronger viscous drag forces. However, irregular cylinders are observed when the viscosity ratio is far lower than 1. The poor deformation ability of PLA particles should be attributed to the much smaller size and weaker viscous drag forces. The well‐defined PLA microfibrils are conducive to avoid damage at the interface, and play a significant role in the enhancement of tensile strength and modulus. This work can simplify the traditional preparation process, construct in situ microfibrils directly by using conventional melt processing techniques and provide a new ideal for the high performance of incompatible polymer blends. POLYM. ENG. SCI., 60:832–840, 2020. © 2020 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25342</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9975-7668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2020-04, Vol.60 (4), p.832-840
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2385950057
source Access via Wiley Online Library
subjects Analysis
Construction
Deformation
Design and construction
Drag
Injection molding
Isotacticity
Lactic acid
Mechanical properties
Morphology
Polyester fibers
Polylactic acid
Polymer blends
Polymers
Polypropylene
Properties
Rheological properties
Rheology
Tensile strength
Thermoplastics mixing
Viscosity
Viscosity ratio
Viscous drag
title In Situ Microfibril Structure in Incompatible Isotactic Polypropylene/Polylactic Acid Blends Controlled By Viscosity Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Microfibril%20Structure%20in%20Incompatible%20Isotactic%20Polypropylene/Polylactic%20Acid%20Blends%20Controlled%20By%20Viscosity%20Ratio&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Su,%20Juan%E2%80%90Juan&rft.date=2020-04&rft.volume=60&rft.issue=4&rft.spage=832&rft.epage=840&rft.pages=832-840&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25342&rft_dat=%3Cgale_proqu%3EA622718377%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385950057&rft_id=info:pmid/&rft_galeid=A622718377&rfr_iscdi=true