Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses

The purpose of this research is to study the effect of different immersed depths on water wheel performance and flow characteristics using numerical simulations. The results indicate that the simulation methods are consistent with experiments with a maximum error less than 5%. Under the same rotatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-04, Vol.12 (4), p.982
Hauptverfasser: Zhao, Mengshang, Zheng, Yuan, Yang, Chunxia, Zhang, Yuquan, Tang, Qinghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 982
container_title Water (Basel)
container_volume 12
creator Zhao, Mengshang
Zheng, Yuan
Yang, Chunxia
Zhang, Yuquan
Tang, Qinghong
description The purpose of this research is to study the effect of different immersed depths on water wheel performance and flow characteristics using numerical simulations. The results indicate that the simulation methods are consistent with experiments with a maximum error less than 5%. Under the same rotational speeds, the efficiency is much higher and the fluctuation amplitude of the torque is much smaller as the immersed radius ratio increases, and until an immersed radius ratio of 82.76%, the wheel shows the best performance, achieving a maximum efficiency of 18.05% at a tip-speed ratio (TSR) of 0.1984. The average difference in water level increases as the immersed radius ratio increases until 82.76%. The water area is much wider and the water volume fraction shows more intense change at the inlet stage at a deep immersed depth. At an immersed radius ratio of 82.76%, some air intrudes into the water at the inlet stage, coupled with a dramatic change in the water volume fraction that would make the flow more complex. Furthermore, eddies are found to gradually generate in a single flow channel nearly at the same time, except for an immersed depth of 1.2 m. However, eddies generate in two flow channels and can develop initial vortexes earlier than other cases because of the elevation of the upstream water level at an immersed radius ratio of 82.76%.
doi_str_mv 10.3390/w12040982
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385896373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791296432</galeid><sourcerecordid>A791296432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a3bf61bba71244931f93fd43f53a10c5901f16f1f922b7e02ed1f3ff5e4899be3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITMCBfxCJE4dCEqcfOU5jfEgTcGDasUpbeytq05FkfPx7goYQ9sH203uWn5wk54JfAWh-_SEkV1yX8iCZSF5AqpQSh__64-TM-1ceQ-myzPgkcc_oaHSDsQ2yB_uOPnRrE7rRspFY2ERwGNB5bNkNbsOGzYmwCZ5FgmErE9Cx1QaxZ0vf2TWbf27RdQPaYHpmbMsed1HeNXGaWtN_efSnyRGZ3uPZbz1Jlrfzl9l9uni6e5hNF2kDIEJqoKZc1LUphFRKgyAN1CqgDIzgTaa5IJFThKWsC-QSW0FAlKEqta4RTpKL_d6tG9920Vj1Ou5cPMJXEsqs1DkUEFlXe9ba9Fh1lsbgTBOzxaFrRovURXxaaCF1rkBGweVe0LjRe4dUbaNh474qwaufN1R_b4BvCLZ5uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385896373</pqid></control><display><type>article</type><title>Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses</title><source>Electronic Journals Library</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhao, Mengshang ; Zheng, Yuan ; Yang, Chunxia ; Zhang, Yuquan ; Tang, Qinghong</creator><creatorcontrib>Zhao, Mengshang ; Zheng, Yuan ; Yang, Chunxia ; Zhang, Yuquan ; Tang, Qinghong</creatorcontrib><description>The purpose of this research is to study the effect of different immersed depths on water wheel performance and flow characteristics using numerical simulations. The results indicate that the simulation methods are consistent with experiments with a maximum error less than 5%. Under the same rotational speeds, the efficiency is much higher and the fluctuation amplitude of the torque is much smaller as the immersed radius ratio increases, and until an immersed radius ratio of 82.76%, the wheel shows the best performance, achieving a maximum efficiency of 18.05% at a tip-speed ratio (TSR) of 0.1984. The average difference in water level increases as the immersed radius ratio increases until 82.76%. The water area is much wider and the water volume fraction shows more intense change at the inlet stage at a deep immersed depth. At an immersed radius ratio of 82.76%, some air intrudes into the water at the inlet stage, coupled with a dramatic change in the water volume fraction that would make the flow more complex. Furthermore, eddies are found to gradually generate in a single flow channel nearly at the same time, except for an immersed depth of 1.2 m. However, eddies generate in two flow channels and can develop initial vortexes earlier than other cases because of the elevation of the upstream water level at an immersed radius ratio of 82.76%.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12040982</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerodynamics ; Analysis ; Computational fluid dynamics ; Computer simulation ; Creeks &amp; streams ; Design ; Eddies ; Efficiency ; Elevation ; Energy ; Experiments ; Flow channels ; Flow characteristics ; Hydraulics ; Hydroelectric power ; Numerical analysis ; Researchers ; Simulation ; Simulation methods ; Stream water ; Turbines ; Turbulence models ; Vortices ; Water ; Water depth ; Water levels ; Water wheels</subject><ispartof>Water (Basel), 2020-04, Vol.12 (4), p.982</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a3bf61bba71244931f93fd43f53a10c5901f16f1f922b7e02ed1f3ff5e4899be3</citedby><cites>FETCH-LOGICAL-c331t-a3bf61bba71244931f93fd43f53a10c5901f16f1f922b7e02ed1f3ff5e4899be3</cites><orcidid>0000-0001-6102-1663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Mengshang</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Yang, Chunxia</creatorcontrib><creatorcontrib>Zhang, Yuquan</creatorcontrib><creatorcontrib>Tang, Qinghong</creatorcontrib><title>Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses</title><title>Water (Basel)</title><description>The purpose of this research is to study the effect of different immersed depths on water wheel performance and flow characteristics using numerical simulations. The results indicate that the simulation methods are consistent with experiments with a maximum error less than 5%. Under the same rotational speeds, the efficiency is much higher and the fluctuation amplitude of the torque is much smaller as the immersed radius ratio increases, and until an immersed radius ratio of 82.76%, the wheel shows the best performance, achieving a maximum efficiency of 18.05% at a tip-speed ratio (TSR) of 0.1984. The average difference in water level increases as the immersed radius ratio increases until 82.76%. The water area is much wider and the water volume fraction shows more intense change at the inlet stage at a deep immersed depth. At an immersed radius ratio of 82.76%, some air intrudes into the water at the inlet stage, coupled with a dramatic change in the water volume fraction that would make the flow more complex. Furthermore, eddies are found to gradually generate in a single flow channel nearly at the same time, except for an immersed depth of 1.2 m. However, eddies generate in two flow channels and can develop initial vortexes earlier than other cases because of the elevation of the upstream water level at an immersed radius ratio of 82.76%.</description><subject>Aerodynamics</subject><subject>Analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Creeks &amp; streams</subject><subject>Design</subject><subject>Eddies</subject><subject>Efficiency</subject><subject>Elevation</subject><subject>Energy</subject><subject>Experiments</subject><subject>Flow channels</subject><subject>Flow characteristics</subject><subject>Hydraulics</subject><subject>Hydroelectric power</subject><subject>Numerical analysis</subject><subject>Researchers</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stream water</subject><subject>Turbines</subject><subject>Turbulence models</subject><subject>Vortices</subject><subject>Water</subject><subject>Water depth</subject><subject>Water levels</subject><subject>Water wheels</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1PwzAMrRBITMCBfxCJE4dCEqcfOU5jfEgTcGDasUpbeytq05FkfPx7goYQ9sH203uWn5wk54JfAWh-_SEkV1yX8iCZSF5AqpQSh__64-TM-1ceQ-myzPgkcc_oaHSDsQ2yB_uOPnRrE7rRspFY2ERwGNB5bNkNbsOGzYmwCZ5FgmErE9Cx1QaxZ0vf2TWbf27RdQPaYHpmbMsed1HeNXGaWtN_efSnyRGZ3uPZbz1Jlrfzl9l9uni6e5hNF2kDIEJqoKZc1LUphFRKgyAN1CqgDIzgTaa5IJFThKWsC-QSW0FAlKEqta4RTpKL_d6tG9920Vj1Ou5cPMJXEsqs1DkUEFlXe9ba9Fh1lsbgTBOzxaFrRovURXxaaCF1rkBGweVe0LjRe4dUbaNh474qwaufN1R_b4BvCLZ5uQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhao, Mengshang</creator><creator>Zheng, Yuan</creator><creator>Yang, Chunxia</creator><creator>Zhang, Yuquan</creator><creator>Tang, Qinghong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6102-1663</orcidid></search><sort><creationdate>20200401</creationdate><title>Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses</title><author>Zhao, Mengshang ; Zheng, Yuan ; Yang, Chunxia ; Zhang, Yuquan ; Tang, Qinghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a3bf61bba71244931f93fd43f53a10c5901f16f1f922b7e02ed1f3ff5e4899be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Creeks &amp; streams</topic><topic>Design</topic><topic>Eddies</topic><topic>Efficiency</topic><topic>Elevation</topic><topic>Energy</topic><topic>Experiments</topic><topic>Flow channels</topic><topic>Flow characteristics</topic><topic>Hydraulics</topic><topic>Hydroelectric power</topic><topic>Numerical analysis</topic><topic>Researchers</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stream water</topic><topic>Turbines</topic><topic>Turbulence models</topic><topic>Vortices</topic><topic>Water</topic><topic>Water depth</topic><topic>Water levels</topic><topic>Water wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mengshang</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Yang, Chunxia</creatorcontrib><creatorcontrib>Zhang, Yuquan</creatorcontrib><creatorcontrib>Tang, Qinghong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Mengshang</au><au>Zheng, Yuan</au><au>Yang, Chunxia</au><au>Zhang, Yuquan</au><au>Tang, Qinghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses</atitle><jtitle>Water (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>982</spage><pages>982-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The purpose of this research is to study the effect of different immersed depths on water wheel performance and flow characteristics using numerical simulations. The results indicate that the simulation methods are consistent with experiments with a maximum error less than 5%. Under the same rotational speeds, the efficiency is much higher and the fluctuation amplitude of the torque is much smaller as the immersed radius ratio increases, and until an immersed radius ratio of 82.76%, the wheel shows the best performance, achieving a maximum efficiency of 18.05% at a tip-speed ratio (TSR) of 0.1984. The average difference in water level increases as the immersed radius ratio increases until 82.76%. The water area is much wider and the water volume fraction shows more intense change at the inlet stage at a deep immersed depth. At an immersed radius ratio of 82.76%, some air intrudes into the water at the inlet stage, coupled with a dramatic change in the water volume fraction that would make the flow more complex. Furthermore, eddies are found to gradually generate in a single flow channel nearly at the same time, except for an immersed depth of 1.2 m. However, eddies generate in two flow channels and can develop initial vortexes earlier than other cases because of the elevation of the upstream water level at an immersed radius ratio of 82.76%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12040982</doi><orcidid>https://orcid.org/0000-0001-6102-1663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2020-04, Vol.12 (4), p.982
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2385896373
source Electronic Journals Library; MDPI - Multidisciplinary Digital Publishing Institute
subjects Aerodynamics
Analysis
Computational fluid dynamics
Computer simulation
Creeks & streams
Design
Eddies
Efficiency
Elevation
Energy
Experiments
Flow channels
Flow characteristics
Hydraulics
Hydroelectric power
Numerical analysis
Researchers
Simulation
Simulation methods
Stream water
Turbines
Turbulence models
Vortices
Water
Water depth
Water levels
Water wheels
title Performance Investigation of the Immersed Depth Effects on a Water Wheel Using Experimental and Numerical Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Investigation%20of%20the%20Immersed%20Depth%20Effects%20on%20a%20Water%20Wheel%20Using%20Experimental%20and%20Numerical%20Analyses&rft.jtitle=Water%20(Basel)&rft.au=Zhao,%20Mengshang&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=982&rft.pages=982-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12040982&rft_dat=%3Cgale_proqu%3EA791296432%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385896373&rft_id=info:pmid/&rft_galeid=A791296432&rfr_iscdi=true