Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method
In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new densi...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2020-04, Vol.61 (4), p.1637-1655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1655 |
---|---|
container_issue | 4 |
container_start_page | 1637 |
container_title | Structural and multidisciplinary optimization |
container_volume | 61 |
creator | Kumar, P. Frouws, J. S. Langelaar, M. |
description | In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given resource constraints. |
doi_str_mv | 10.1007/s00158-019-02442-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385884211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385884211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ff6f9dd8118e4ba4a9f54ba1f288b62553dfc64681fdeec3cd3c937e1a7eb4fa3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hzwxk7iHFF5SkhcisTNcv1oXZI42M6h_HoMRXDjNKvdmVnpQ-gcyCUQ0lxFQqDiBYG2ICVjZUEO0AxqqApgnB_-zs3rMTqJcUsI4YS1M_S29KPv_HqH_Zhc7z5kcn7A3mLbTU47hcdgYpyCKTovtdE4pjCplBcRy0Fj5fuxc3JIuDdqIwcX-4in6IY1ThuDb2RQu3xKG69P0ZGVXTRnPzpHL3e3y8VD8fR8_7i4fioUhTYV1ta21ZoDcMNWksnWVlnBlpyv6rKqqLaqZjUHq41RVGmqWtoYkI1ZMSvpHF3se8fg3ycTk9j6KQz5pSgprzhnJUB2lXuXCj7GYKwYg-tl2Akg4guq2EMVGar4hipIDtF9KGbzsDbhr_qf1CeCTn2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385884211</pqid></control><display><type>article</type><title>Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, P. ; Frouws, J. S. ; Langelaar, M.</creator><creatorcontrib>Kumar, P. ; Frouws, J. S. ; Langelaar, M.</creatorcontrib><description>In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given resource constraints.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-019-02442-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological evolution ; Computational Mathematics and Numerical Analysis ; Density ; Design optimization ; Drainage ; Engineering ; Engineering Design ; Finite element method ; Loads (forces) ; Mathematical analysis ; Multiple criterion ; Optimization ; Porosity ; Pressure dependence ; Research Paper ; Robustness (mathematics) ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2020-04, Vol.61 (4), p.1637-1655</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ff6f9dd8118e4ba4a9f54ba1f288b62553dfc64681fdeec3cd3c937e1a7eb4fa3</citedby><cites>FETCH-LOGICAL-c319t-ff6f9dd8118e4ba4a9f54ba1f288b62553dfc64681fdeec3cd3c937e1a7eb4fa3</cites><orcidid>0000-0001-6812-9861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-019-02442-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-019-02442-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Frouws, J. S.</creatorcontrib><creatorcontrib>Langelaar, M.</creatorcontrib><title>Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given resource constraints.</description><subject>Biological evolution</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Design optimization</subject><subject>Drainage</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Loads (forces)</subject><subject>Mathematical analysis</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Pressure dependence</subject><subject>Research Paper</subject><subject>Robustness (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hzwxk7iHFF5SkhcisTNcv1oXZI42M6h_HoMRXDjNKvdmVnpQ-gcyCUQ0lxFQqDiBYG2ICVjZUEO0AxqqApgnB_-zs3rMTqJcUsI4YS1M_S29KPv_HqH_Zhc7z5kcn7A3mLbTU47hcdgYpyCKTovtdE4pjCplBcRy0Fj5fuxc3JIuDdqIwcX-4in6IY1ThuDb2RQu3xKG69P0ZGVXTRnPzpHL3e3y8VD8fR8_7i4fioUhTYV1ta21ZoDcMNWksnWVlnBlpyv6rKqqLaqZjUHq41RVGmqWtoYkI1ZMSvpHF3se8fg3ycTk9j6KQz5pSgprzhnJUB2lXuXCj7GYKwYg-tl2Akg4guq2EMVGar4hipIDtF9KGbzsDbhr_qf1CeCTn2g</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kumar, P.</creator><creator>Frouws, J. S.</creator><creator>Langelaar, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6812-9861</orcidid></search><sort><creationdate>20200401</creationdate><title>Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method</title><author>Kumar, P. ; Frouws, J. S. ; Langelaar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ff6f9dd8118e4ba4a9f54ba1f288b62553dfc64681fdeec3cd3c937e1a7eb4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological evolution</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Design optimization</topic><topic>Drainage</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Loads (forces)</topic><topic>Mathematical analysis</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Pressure dependence</topic><topic>Research Paper</topic><topic>Robustness (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Frouws, J. S.</creatorcontrib><creatorcontrib>Langelaar, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P.</au><au>Frouws, J. S.</au><au>Langelaar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>61</volume><issue>4</issue><spage>1637</spage><epage>1655</epage><pages>1637-1655</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given resource constraints.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-019-02442-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6812-9861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2020-04, Vol.61 (4), p.1637-1655 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2385884211 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological evolution Computational Mathematics and Numerical Analysis Density Design optimization Drainage Engineering Engineering Design Finite element method Loads (forces) Mathematical analysis Multiple criterion Optimization Porosity Pressure dependence Research Paper Robustness (mathematics) Theoretical and Applied Mechanics Topology optimization |
title | Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20fluidic%20pressure-loaded%20structures%20and%20compliant%20mechanisms%20using%20the%20Darcy%20method&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Kumar,%20P.&rft.date=2020-04-01&rft.volume=61&rft.issue=4&rft.spage=1637&rft.epage=1655&rft.pages=1637-1655&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-019-02442-0&rft_dat=%3Cproquest_cross%3E2385884211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385884211&rft_id=info:pmid/&rfr_iscdi=true |