Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites

Graphene nanosheets (GNs) were prepared by supercritical solvent intercalation method and cyclic stripping method under high pressure and stress. This “non‐chemical method” reduces impurities and avoids the destruction of graphene's intrinsic structure. In order to decrease the secondary stacki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2020-04, Vol.41 (4), p.1299-1309
Hauptverfasser: Qin, Hongmei, Deng, Chaoran, Lu, Shengjun, Yang, Yong, Guan, Guichao, Liu, Zhen, Yu, Qiuhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1309
container_issue 4
container_start_page 1299
container_title Polymer composites
container_volume 41
creator Qin, Hongmei
Deng, Chaoran
Lu, Shengjun
Yang, Yong
Guan, Guichao
Liu, Zhen
Yu, Qiuhao
description Graphene nanosheets (GNs) were prepared by supercritical solvent intercalation method and cyclic stripping method under high pressure and stress. This “non‐chemical method” reduces impurities and avoids the destruction of graphene's intrinsic structure. In order to decrease the secondary stacking in processing, firstly GNs were dispersed in natural rubber (NR) latex to prepare NR/GNs concentrated master batch, and then combined with solid NR by mechanical blending. Since GNs have good dispersion in rubber matrix, a strong intermolecular force is formed between GNs and NR. Tensile strength, elongation at break, stress at 100% strain, stress at 300% strain, and tear strength of NR/GNs nanocomposites with 2 wt% GNs are enhanced 59.53%, 17.85%, 67.07%, 80.12% and19.20% respectively compared with NR. With more GNs, the NR/GNs nanocomposites exhibit lower Tg and better thermal stability. When the content of GNs in NR/GNs nanocomposites reaches 2 wt%, the Tg of nanocomposites drops about 2°C, and the remaining carbon at 600°C of nanocomposites increase by 3.07%. Moreover, It is demonstrated that the NR filled with 2 wt% GNs possess excellent thermal conductivity of 0.24 W m−1 K−1,which is a 50% increment compared with pure NR. Meanwhile, the electrical conductivity of the composites increases by four orders of magnitude than that of pure NR. These results clearly indicate that GNs can be expected to be manufactured at large scale and utilized in heat‐conducting and antistatic rubber.
doi_str_mv 10.1002/pc.25455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385820674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385820674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-613ede5019edadc8726782c80616ddf6e0b54b21057b16beecd2e8c09c11c5d13</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8oePFg3SRt0u5RlvUDFvSg59BOprZL29QkXem_N269eprh5WGGGUKuGb1nlPLVAPdcpEKckAUTaR5TIdenZEF5xuM8WWfn5MK5fZBMymRBDtu-LnpAHXUIoWugaKPBmgGtn-4iX6PtQlL0OsIWwdsjANPrEXxzaPwUmSrqCz_akNuxLNGuPm0x1NhjyHvjakTvji2YbjCu8eguyVlVtA6v_uqSfDxu3zfP8e716WXzsIshSaiIJUtQo6BsjbrQkGdcZjmHnEomta4k0lKkJWdUZCWTJSJojjnQNTAGQrNkSW7mueGkrxGdV3sz2j6sVDzJRc6pzNKgbmcF1jhnsVKDbbrCTopR9ftVNYA6fjXQeKbfTYvTv069bWb_AxvOesA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385820674</pqid></control><display><type>article</type><title>Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites</title><source>Wiley Online Library All Journals</source><creator>Qin, Hongmei ; Deng, Chaoran ; Lu, Shengjun ; Yang, Yong ; Guan, Guichao ; Liu, Zhen ; Yu, Qiuhao</creator><creatorcontrib>Qin, Hongmei ; Deng, Chaoran ; Lu, Shengjun ; Yang, Yong ; Guan, Guichao ; Liu, Zhen ; Yu, Qiuhao</creatorcontrib><description>Graphene nanosheets (GNs) were prepared by supercritical solvent intercalation method and cyclic stripping method under high pressure and stress. This “non‐chemical method” reduces impurities and avoids the destruction of graphene's intrinsic structure. In order to decrease the secondary stacking in processing, firstly GNs were dispersed in natural rubber (NR) latex to prepare NR/GNs concentrated master batch, and then combined with solid NR by mechanical blending. Since GNs have good dispersion in rubber matrix, a strong intermolecular force is formed between GNs and NR. Tensile strength, elongation at break, stress at 100% strain, stress at 300% strain, and tear strength of NR/GNs nanocomposites with 2 wt% GNs are enhanced 59.53%, 17.85%, 67.07%, 80.12% and19.20% respectively compared with NR. With more GNs, the NR/GNs nanocomposites exhibit lower Tg and better thermal stability. When the content of GNs in NR/GNs nanocomposites reaches 2 wt%, the Tg of nanocomposites drops about 2°C, and the remaining carbon at 600°C of nanocomposites increase by 3.07%. Moreover, It is demonstrated that the NR filled with 2 wt% GNs possess excellent thermal conductivity of 0.24 W m−1 K−1,which is a 50% increment compared with pure NR. Meanwhile, the electrical conductivity of the composites increases by four orders of magnitude than that of pure NR. These results clearly indicate that GNs can be expected to be manufactured at large scale and utilized in heat‐conducting and antistatic rubber.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.25455</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Antistatics ; Dispersion ; Electrical resistivity ; Elongation ; Graphene ; Heat transmission ; Intermolecular forces ; Latex ; Nanocomposites ; Nanosheets ; Natural rubber ; Rubber ; Strain ; Tear strength ; Tensile strength ; Thermal conductivity ; Thermal stability</subject><ispartof>Polymer composites, 2020-04, Vol.41 (4), p.1299-1309</ispartof><rights>2019 Society of Plastics Engineers</rights><rights>2020 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-613ede5019edadc8726782c80616ddf6e0b54b21057b16beecd2e8c09c11c5d13</citedby><cites>FETCH-LOGICAL-c3305-613ede5019edadc8726782c80616ddf6e0b54b21057b16beecd2e8c09c11c5d13</cites><orcidid>0000-0002-3578-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.25455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.25455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Qin, Hongmei</creatorcontrib><creatorcontrib>Deng, Chaoran</creatorcontrib><creatorcontrib>Lu, Shengjun</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Guan, Guichao</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Yu, Qiuhao</creatorcontrib><title>Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites</title><title>Polymer composites</title><description>Graphene nanosheets (GNs) were prepared by supercritical solvent intercalation method and cyclic stripping method under high pressure and stress. This “non‐chemical method” reduces impurities and avoids the destruction of graphene's intrinsic structure. In order to decrease the secondary stacking in processing, firstly GNs were dispersed in natural rubber (NR) latex to prepare NR/GNs concentrated master batch, and then combined with solid NR by mechanical blending. Since GNs have good dispersion in rubber matrix, a strong intermolecular force is formed between GNs and NR. Tensile strength, elongation at break, stress at 100% strain, stress at 300% strain, and tear strength of NR/GNs nanocomposites with 2 wt% GNs are enhanced 59.53%, 17.85%, 67.07%, 80.12% and19.20% respectively compared with NR. With more GNs, the NR/GNs nanocomposites exhibit lower Tg and better thermal stability. When the content of GNs in NR/GNs nanocomposites reaches 2 wt%, the Tg of nanocomposites drops about 2°C, and the remaining carbon at 600°C of nanocomposites increase by 3.07%. Moreover, It is demonstrated that the NR filled with 2 wt% GNs possess excellent thermal conductivity of 0.24 W m−1 K−1,which is a 50% increment compared with pure NR. Meanwhile, the electrical conductivity of the composites increases by four orders of magnitude than that of pure NR. These results clearly indicate that GNs can be expected to be manufactured at large scale and utilized in heat‐conducting and antistatic rubber.</description><subject>Antistatics</subject><subject>Dispersion</subject><subject>Electrical resistivity</subject><subject>Elongation</subject><subject>Graphene</subject><subject>Heat transmission</subject><subject>Intermolecular forces</subject><subject>Latex</subject><subject>Nanocomposites</subject><subject>Nanosheets</subject><subject>Natural rubber</subject><subject>Rubber</subject><subject>Strain</subject><subject>Tear strength</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8oePFg3SRt0u5RlvUDFvSg59BOprZL29QkXem_N269eprh5WGGGUKuGb1nlPLVAPdcpEKckAUTaR5TIdenZEF5xuM8WWfn5MK5fZBMymRBDtu-LnpAHXUIoWugaKPBmgGtn-4iX6PtQlL0OsIWwdsjANPrEXxzaPwUmSrqCz_akNuxLNGuPm0x1NhjyHvjakTvji2YbjCu8eguyVlVtA6v_uqSfDxu3zfP8e716WXzsIshSaiIJUtQo6BsjbrQkGdcZjmHnEomta4k0lKkJWdUZCWTJSJojjnQNTAGQrNkSW7mueGkrxGdV3sz2j6sVDzJRc6pzNKgbmcF1jhnsVKDbbrCTopR9ftVNYA6fjXQeKbfTYvTv069bWb_AxvOesA</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Qin, Hongmei</creator><creator>Deng, Chaoran</creator><creator>Lu, Shengjun</creator><creator>Yang, Yong</creator><creator>Guan, Guichao</creator><creator>Liu, Zhen</creator><creator>Yu, Qiuhao</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3578-7419</orcidid></search><sort><creationdate>202004</creationdate><title>Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites</title><author>Qin, Hongmei ; Deng, Chaoran ; Lu, Shengjun ; Yang, Yong ; Guan, Guichao ; Liu, Zhen ; Yu, Qiuhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-613ede5019edadc8726782c80616ddf6e0b54b21057b16beecd2e8c09c11c5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antistatics</topic><topic>Dispersion</topic><topic>Electrical resistivity</topic><topic>Elongation</topic><topic>Graphene</topic><topic>Heat transmission</topic><topic>Intermolecular forces</topic><topic>Latex</topic><topic>Nanocomposites</topic><topic>Nanosheets</topic><topic>Natural rubber</topic><topic>Rubber</topic><topic>Strain</topic><topic>Tear strength</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Hongmei</creatorcontrib><creatorcontrib>Deng, Chaoran</creatorcontrib><creatorcontrib>Lu, Shengjun</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Guan, Guichao</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Yu, Qiuhao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Hongmei</au><au>Deng, Chaoran</au><au>Lu, Shengjun</au><au>Yang, Yong</au><au>Guan, Guichao</au><au>Liu, Zhen</au><au>Yu, Qiuhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites</atitle><jtitle>Polymer composites</jtitle><date>2020-04</date><risdate>2020</risdate><volume>41</volume><issue>4</issue><spage>1299</spage><epage>1309</epage><pages>1299-1309</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Graphene nanosheets (GNs) were prepared by supercritical solvent intercalation method and cyclic stripping method under high pressure and stress. This “non‐chemical method” reduces impurities and avoids the destruction of graphene's intrinsic structure. In order to decrease the secondary stacking in processing, firstly GNs were dispersed in natural rubber (NR) latex to prepare NR/GNs concentrated master batch, and then combined with solid NR by mechanical blending. Since GNs have good dispersion in rubber matrix, a strong intermolecular force is formed between GNs and NR. Tensile strength, elongation at break, stress at 100% strain, stress at 300% strain, and tear strength of NR/GNs nanocomposites with 2 wt% GNs are enhanced 59.53%, 17.85%, 67.07%, 80.12% and19.20% respectively compared with NR. With more GNs, the NR/GNs nanocomposites exhibit lower Tg and better thermal stability. When the content of GNs in NR/GNs nanocomposites reaches 2 wt%, the Tg of nanocomposites drops about 2°C, and the remaining carbon at 600°C of nanocomposites increase by 3.07%. Moreover, It is demonstrated that the NR filled with 2 wt% GNs possess excellent thermal conductivity of 0.24 W m−1 K−1,which is a 50% increment compared with pure NR. Meanwhile, the electrical conductivity of the composites increases by four orders of magnitude than that of pure NR. These results clearly indicate that GNs can be expected to be manufactured at large scale and utilized in heat‐conducting and antistatic rubber.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.25455</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3578-7419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2020-04, Vol.41 (4), p.1299-1309
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2385820674
source Wiley Online Library All Journals
subjects Antistatics
Dispersion
Electrical resistivity
Elongation
Graphene
Heat transmission
Intermolecular forces
Latex
Nanocomposites
Nanosheets
Natural rubber
Rubber
Strain
Tear strength
Tensile strength
Thermal conductivity
Thermal stability
title Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20mechanical%20property,%20thermal%20and%20electrical%20conductivity%20of%20natural%20rubber/graphene%20nanosheets%20nanocomposites&rft.jtitle=Polymer%20composites&rft.au=Qin,%20Hongmei&rft.date=2020-04&rft.volume=41&rft.issue=4&rft.spage=1299&rft.epage=1309&rft.pages=1299-1309&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.25455&rft_dat=%3Cproquest_cross%3E2385820674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385820674&rft_id=info:pmid/&rfr_iscdi=true