A space-time certified reduced basis method for quasilinear parabolic partial differential equations
In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic problems. The method is based on a space-time variational formulation. We provide a residual-based a-posteriori error bound on a space-time level and the corresponding efficiently computable estimator for the c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hinze, Michael Korolev, Denis |
description | In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic problems. The method is based on a space-time variational formulation. We provide a residual-based a-posteriori error bound on a space-time level and the corresponding efficiently computable estimator for the certification of the method. We use the Empirical Interpolation method (EIM) to guarantee the efficient offline-online computational procedure. The error of the EIM method is then rigorously incorporated into the certification procedure. The Petrov-Galerkin finite element discretization allows to benefit from the Crank-Nicolson interpretation of the discrete problem and to use a POD-Greedy approach to construct the reduced-basis spaces of small dimensions. It computes the reduced basis solution in a time-marching framework while the RB approximation error in a space-time norm is controlled by the estimator. Therefore the proposed method incorporates a POD-Greedy approximation into a space-time certification. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2385540477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385540477</sourcerecordid><originalsourceid>FETCH-proquest_journals_23855404773</originalsourceid><addsrcrecordid>eNqNit8KgjAUh0cQJOU7DLoWbHPpbUTRA3Qv053Rkbnpznz_LHqArr7fn2_DMiHlqWgqIXYsJxrKshTnWiglM2YunCbdQ5FwBN5DTGgRDI9gln5lpwmJj5BewXAbIp-XdXHoQUc-6ai74LD_pITacYPWQgT_LbC6CYOnA9ta7QjyH_fseL89r49iimFegFI7hCX69WqFbJSqyqqu5X_WG2kwRy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385540477</pqid></control><display><type>article</type><title>A space-time certified reduced basis method for quasilinear parabolic partial differential equations</title><source>Free E- Journals</source><creator>Hinze, Michael ; Korolev, Denis</creator><creatorcontrib>Hinze, Michael ; Korolev, Denis</creatorcontrib><description>In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic problems. The method is based on a space-time variational formulation. We provide a residual-based a-posteriori error bound on a space-time level and the corresponding efficiently computable estimator for the certification of the method. We use the Empirical Interpolation method (EIM) to guarantee the efficient offline-online computational procedure. The error of the EIM method is then rigorously incorporated into the certification procedure. The Petrov-Galerkin finite element discretization allows to benefit from the Crank-Nicolson interpretation of the discrete problem and to use a POD-Greedy approach to construct the reduced-basis spaces of small dimensions. It computes the reduced basis solution in a time-marching framework while the RB approximation error in a space-time norm is controlled by the estimator. Therefore the proposed method incorporates a POD-Greedy approximation into a space-time certification.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Certification ; Galerkin method ; Interpolation ; Mathematical analysis ; Parabolic differential equations ; Partial differential equations ; Spacetime</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Korolev, Denis</creatorcontrib><title>A space-time certified reduced basis method for quasilinear parabolic partial differential equations</title><title>arXiv.org</title><description>In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic problems. The method is based on a space-time variational formulation. We provide a residual-based a-posteriori error bound on a space-time level and the corresponding efficiently computable estimator for the certification of the method. We use the Empirical Interpolation method (EIM) to guarantee the efficient offline-online computational procedure. The error of the EIM method is then rigorously incorporated into the certification procedure. The Petrov-Galerkin finite element discretization allows to benefit from the Crank-Nicolson interpretation of the discrete problem and to use a POD-Greedy approach to construct the reduced-basis spaces of small dimensions. It computes the reduced basis solution in a time-marching framework while the RB approximation error in a space-time norm is controlled by the estimator. Therefore the proposed method incorporates a POD-Greedy approximation into a space-time certification.</description><subject>Approximation</subject><subject>Certification</subject><subject>Galerkin method</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Spacetime</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit8KgjAUh0cQJOU7DLoWbHPpbUTRA3Qv053Rkbnpznz_LHqArr7fn2_DMiHlqWgqIXYsJxrKshTnWiglM2YunCbdQ5FwBN5DTGgRDI9gln5lpwmJj5BewXAbIp-XdXHoQUc-6ai74LD_pITacYPWQgT_LbC6CYOnA9ta7QjyH_fseL89r49iimFegFI7hCX69WqFbJSqyqqu5X_WG2kwRy8</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Hinze, Michael</creator><creator>Korolev, Denis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201218</creationdate><title>A space-time certified reduced basis method for quasilinear parabolic partial differential equations</title><author>Hinze, Michael ; Korolev, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23855404773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Certification</topic><topic>Galerkin method</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Spacetime</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Korolev, Denis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinze, Michael</au><au>Korolev, Denis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A space-time certified reduced basis method for quasilinear parabolic partial differential equations</atitle><jtitle>arXiv.org</jtitle><date>2020-12-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic problems. The method is based on a space-time variational formulation. We provide a residual-based a-posteriori error bound on a space-time level and the corresponding efficiently computable estimator for the certification of the method. We use the Empirical Interpolation method (EIM) to guarantee the efficient offline-online computational procedure. The error of the EIM method is then rigorously incorporated into the certification procedure. The Petrov-Galerkin finite element discretization allows to benefit from the Crank-Nicolson interpretation of the discrete problem and to use a POD-Greedy approach to construct the reduced-basis spaces of small dimensions. It computes the reduced basis solution in a time-marching framework while the RB approximation error in a space-time norm is controlled by the estimator. Therefore the proposed method incorporates a POD-Greedy approximation into a space-time certification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2385540477 |
source | Free E- Journals |
subjects | Approximation Certification Galerkin method Interpolation Mathematical analysis Parabolic differential equations Partial differential equations Spacetime |
title | A space-time certified reduced basis method for quasilinear parabolic partial differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20space-time%20certified%20reduced%20basis%20method%20for%20quasilinear%20parabolic%20partial%20differential%20equations&rft.jtitle=arXiv.org&rft.au=Hinze,%20Michael&rft.date=2020-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2385540477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385540477&rft_id=info:pmid/&rfr_iscdi=true |