Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems
Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approa...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2020-08, Vol.10 (4), p.3672 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 3672 |
container_title | International journal of electrical and computer engineering (Malacca, Malacca) |
container_volume | 10 |
creator | Alzaqebah, Malek Alrefai, Nashat Ahmed, Eman A. E. Jawarneh, Sana Alsmadi, Mutasem K. |
description | Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches. |
doi_str_mv | 10.11591/ijece.v10i4.pp3672-3684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384919287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384919287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-246981cc6891ccc45045fa201c2d8d28f6e89e604f475328cabfd3ae1ca907843</originalsourceid><addsrcrecordid>eNotkF1LwzAUhosoOHT_IeB1Z5KmzemlDL9guhu9Dml6smasS006h_56Y7ebcw6c9wOeLCOMLhgra3bvtmhw8c2oE4thKCrJ86ICcZHNuOQ856WEy3RTgBwkhetsHqNrqBBSUFmVs8y_o9t0jQ-d9y2JqIPpSI9j59tIjm7syJtPYz2Mrne_enR-T_Ru40N69URHoskx6GHAcHYR6wOxqMdDwJS3QzN5huCbHfbxNruyehdxft432efT48fyJV-tn1-XD6vccMrHnIuqBmZMBXWaRpRUlFZzygxvoeVgK4QaKyqskGXBwejGtoVGZnRNJYjiJrs75abirwPGUW39IexTpeIFiJrVHGRSwUllgo8xoFVDcL0OP4pRNRFWE2E1EVYnwuqfcPEHalJ0GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384919287</pqid></control><display><type>article</type><title>Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alzaqebah, Malek ; Alrefai, Nashat ; Ahmed, Eman A. E. ; Jawarneh, Sana ; Alsmadi, Mutasem K.</creator><creatorcontrib>Alzaqebah, Malek ; Alrefai, Nashat ; Ahmed, Eman A. E. ; Jawarneh, Sana ; Alsmadi, Mutasem K.</creatorcontrib><description>Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v10i4.pp3672-3684</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Algorithms ; Computer simulation ; Machine learning ; Neighborhoods ; Optimization ; Search methods</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2020-08, Vol.10 (4), p.3672</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Aug 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-246981cc6891ccc45045fa201c2d8d28f6e89e604f475328cabfd3ae1ca907843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alzaqebah, Malek</creatorcontrib><creatorcontrib>Alrefai, Nashat</creatorcontrib><creatorcontrib>Ahmed, Eman A. E.</creatorcontrib><creatorcontrib>Jawarneh, Sana</creatorcontrib><creatorcontrib>Alsmadi, Mutasem K.</creatorcontrib><title>Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Machine learning</subject><subject>Neighborhoods</subject><subject>Optimization</subject><subject>Search methods</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkF1LwzAUhosoOHT_IeB1Z5KmzemlDL9guhu9Dml6smasS006h_56Y7ebcw6c9wOeLCOMLhgra3bvtmhw8c2oE4thKCrJ86ICcZHNuOQ856WEy3RTgBwkhetsHqNrqBBSUFmVs8y_o9t0jQ-d9y2JqIPpSI9j59tIjm7syJtPYz2Mrne_enR-T_Ru40N69URHoskx6GHAcHYR6wOxqMdDwJS3QzN5huCbHfbxNruyehdxft432efT48fyJV-tn1-XD6vccMrHnIuqBmZMBXWaRpRUlFZzygxvoeVgK4QaKyqskGXBwejGtoVGZnRNJYjiJrs75abirwPGUW39IexTpeIFiJrVHGRSwUllgo8xoFVDcL0OP4pRNRFWE2E1EVYnwuqfcPEHalJ0GA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Alzaqebah, Malek</creator><creator>Alrefai, Nashat</creator><creator>Ahmed, Eman A. E.</creator><creator>Jawarneh, Sana</creator><creator>Alsmadi, Mutasem K.</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200801</creationdate><title>Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems</title><author>Alzaqebah, Malek ; Alrefai, Nashat ; Ahmed, Eman A. E. ; Jawarneh, Sana ; Alsmadi, Mutasem K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-246981cc6891ccc45045fa201c2d8d28f6e89e604f475328cabfd3ae1ca907843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Machine learning</topic><topic>Neighborhoods</topic><topic>Optimization</topic><topic>Search methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Alzaqebah, Malek</creatorcontrib><creatorcontrib>Alrefai, Nashat</creatorcontrib><creatorcontrib>Ahmed, Eman A. E.</creatorcontrib><creatorcontrib>Jawarneh, Sana</creatorcontrib><creatorcontrib>Alsmadi, Mutasem K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzaqebah, Malek</au><au>Alrefai, Nashat</au><au>Ahmed, Eman A. E.</au><au>Jawarneh, Sana</au><au>Alsmadi, Mutasem K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>3672</spage><pages>3672-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v10i4.pp3672-3684</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2088-8708 |
ispartof | International journal of electrical and computer engineering (Malacca, Malacca), 2020-08, Vol.10 (4), p.3672 |
issn | 2088-8708 2722-2578 2088-8708 |
language | eng |
recordid | cdi_proquest_journals_2384919287 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Computer simulation Machine learning Neighborhoods Optimization Search methods |
title | Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighborhood%20search%20methods%20with%20Moth%20Optimization%20algorithm%20as%20a%20wrapper%20method%20for%20feature%20selection%20problems&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Alzaqebah,%20Malek&rft.date=2020-08-01&rft.volume=10&rft.issue=4&rft.spage=3672&rft.pages=3672-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v10i4.pp3672-3684&rft_dat=%3Cproquest_cross%3E2384919287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384919287&rft_id=info:pmid/&rfr_iscdi=true |