Localized Donaldson-Thomas theory of surfaces
Let $S$ be a projective simply connected complex surface and $\cal{L}$ be a line bundle on $S$. We study the moduli space of stable compactly supported2-dimensional sheaves on the total spaces of $\cal{L}$. The moduli space admits a ${\Bbb C}^*$-action induced by scaling the fibers of $\cal{L}$. We...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2020-04, Vol.142 (2), p.405-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 2 |
container_start_page | 405 |
container_title | American journal of mathematics |
container_volume | 142 |
creator | Gholampour, Amin Sheshmani, Artan Yau, Shing-Tung |
description | Let $S$ be a projective simply connected complex surface and $\cal{L}$ be a line bundle on $S$. We study the moduli space of stable compactly supported2-dimensional sheaves on the total spaces of $\cal{L}$. The moduli space admits a ${\Bbb C}^*$-action induced by scaling the fibers of $\cal{L}$. We identify certain components of the fixed locus of the moduli space with the moduli space of torsion free sheaves and the nested Hilbert schemes on $S$. We define the localized (reduced) Donaldson-Thomas invariants of $\cal{L}$ by virtual localization in the case that $\cal{L}$ twisted by the anti-canonical bundle of $S$ admits a nonzero global section. When $p_g(S)>0$, in combination with Mochizuki's formulas, we are able to express these invariants in terms of the invariants from the nested Hilbert schemes defined by the authors, the Seiberg-Witten invariants of $S$, and the integrals over the products of Hilbert schemes of points on $S$. When $\cal{L}$ is the canonical bundle of $S$, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality. |
doi_str_mv | 10.1353/ajm.2020.0011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384884757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384884757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cacce5eaf7927e27b362f02a15183e23c0c05301750690fa9b8eb189168c1a843</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbq0fuC59SZZLPJHqV-QsGD9RzSdEK7dJua7B7qr3eXip6GgXdehoexW4QZSiXvXdPOBAiYASCesQmCAV5Jrc_ZBAAEr6XQl-wq52ZYQYOYML6I3u2237QuHuPe7dY57vlyE1uXi25DMR2LGIrcp-A85Wt2Edwu083vnLLP56fl_JUv3l_e5g8L7mVZd9w770mRC7oWmoReyUoEEA4VGklCevCgJKBWUNUQXL0ytEJTY2U8OlPKKbs79R5S_Oopd7aJfRrey1ZIUxpTaqWHFD-lfIo5Jwr2kLatS0eLYEcRO4jYUcSOIkO-_GttyHdtn-m_WCusKmE_RrURbbwb0ED-AOf8YgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384884757</pqid></control><display><type>article</type><title>Localized Donaldson-Thomas theory of surfaces</title><source>Project MUSE eJournals - Premium Collection</source><creator>Gholampour, Amin ; Sheshmani, Artan ; Yau, Shing-Tung</creator><creatorcontrib>Gholampour, Amin ; Sheshmani, Artan ; Yau, Shing-Tung</creatorcontrib><description>Let $S$ be a projective simply connected complex surface and $\cal{L}$ be a line bundle on $S$. We study the moduli space of stable compactly supported2-dimensional sheaves on the total spaces of $\cal{L}$. The moduli space admits a ${\Bbb C}^*$-action induced by scaling the fibers of $\cal{L}$. We identify certain components of the fixed locus of the moduli space with the moduli space of torsion free sheaves and the nested Hilbert schemes on $S$. We define the localized (reduced) Donaldson-Thomas invariants of $\cal{L}$ by virtual localization in the case that $\cal{L}$ twisted by the anti-canonical bundle of $S$ admits a nonzero global section. When $p_g(S)>0$, in combination with Mochizuki's formulas, we are able to express these invariants in terms of the invariants from the nested Hilbert schemes defined by the authors, the Seiberg-Witten invariants of $S$, and the integrals over the products of Hilbert schemes of points on $S$. When $\cal{L}$ is the canonical bundle of $S$, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2020.0011</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Bundling ; Dimensional stability ; Invariants ; Linear algebra ; Sheaves ; Topological manifolds</subject><ispartof>American journal of mathematics, 2020-04, Vol.142 (2), p.405-442</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cacce5eaf7927e27b362f02a15183e23c0c05301750690fa9b8eb189168c1a843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/751662/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/751662$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,776,780,21106,27901,27902,56817,57377</link.rule.ids></links><search><creatorcontrib>Gholampour, Amin</creatorcontrib><creatorcontrib>Sheshmani, Artan</creatorcontrib><creatorcontrib>Yau, Shing-Tung</creatorcontrib><title>Localized Donaldson-Thomas theory of surfaces</title><title>American journal of mathematics</title><description>Let $S$ be a projective simply connected complex surface and $\cal{L}$ be a line bundle on $S$. We study the moduli space of stable compactly supported2-dimensional sheaves on the total spaces of $\cal{L}$. The moduli space admits a ${\Bbb C}^*$-action induced by scaling the fibers of $\cal{L}$. We identify certain components of the fixed locus of the moduli space with the moduli space of torsion free sheaves and the nested Hilbert schemes on $S$. We define the localized (reduced) Donaldson-Thomas invariants of $\cal{L}$ by virtual localization in the case that $\cal{L}$ twisted by the anti-canonical bundle of $S$ admits a nonzero global section. When $p_g(S)>0$, in combination with Mochizuki's formulas, we are able to express these invariants in terms of the invariants from the nested Hilbert schemes defined by the authors, the Seiberg-Witten invariants of $S$, and the integrals over the products of Hilbert schemes of points on $S$. When $\cal{L}$ is the canonical bundle of $S$, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality.</description><subject>Bundling</subject><subject>Dimensional stability</subject><subject>Invariants</subject><subject>Linear algebra</subject><subject>Sheaves</subject><subject>Topological manifolds</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0E1LAzEQBuAgCtbq0fuC59SZZLPJHqV-QsGD9RzSdEK7dJua7B7qr3eXip6GgXdehoexW4QZSiXvXdPOBAiYASCesQmCAV5Jrc_ZBAAEr6XQl-wq52ZYQYOYML6I3u2237QuHuPe7dY57vlyE1uXi25DMR2LGIrcp-A85Wt2Edwu083vnLLP56fl_JUv3l_e5g8L7mVZd9w770mRC7oWmoReyUoEEA4VGklCevCgJKBWUNUQXL0ytEJTY2U8OlPKKbs79R5S_Oopd7aJfRrey1ZIUxpTaqWHFD-lfIo5Jwr2kLatS0eLYEcRO4jYUcSOIkO-_GttyHdtn-m_WCusKmE_RrURbbwb0ED-AOf8YgE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gholampour, Amin</creator><creator>Sheshmani, Artan</creator><creator>Yau, Shing-Tung</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200401</creationdate><title>Localized Donaldson-Thomas theory of surfaces</title><author>Gholampour, Amin ; Sheshmani, Artan ; Yau, Shing-Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cacce5eaf7927e27b362f02a15183e23c0c05301750690fa9b8eb189168c1a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundling</topic><topic>Dimensional stability</topic><topic>Invariants</topic><topic>Linear algebra</topic><topic>Sheaves</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholampour, Amin</creatorcontrib><creatorcontrib>Sheshmani, Artan</creatorcontrib><creatorcontrib>Yau, Shing-Tung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholampour, Amin</au><au>Sheshmani, Artan</au><au>Yau, Shing-Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Donaldson-Thomas theory of surfaces</atitle><jtitle>American journal of mathematics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>142</volume><issue>2</issue><spage>405</spage><epage>442</epage><pages>405-442</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>Let $S$ be a projective simply connected complex surface and $\cal{L}$ be a line bundle on $S$. We study the moduli space of stable compactly supported2-dimensional sheaves on the total spaces of $\cal{L}$. The moduli space admits a ${\Bbb C}^*$-action induced by scaling the fibers of $\cal{L}$. We identify certain components of the fixed locus of the moduli space with the moduli space of torsion free sheaves and the nested Hilbert schemes on $S$. We define the localized (reduced) Donaldson-Thomas invariants of $\cal{L}$ by virtual localization in the case that $\cal{L}$ twisted by the anti-canonical bundle of $S$ admits a nonzero global section. When $p_g(S)>0$, in combination with Mochizuki's formulas, we are able to express these invariants in terms of the invariants from the nested Hilbert schemes defined by the authors, the Seiberg-Witten invariants of $S$, and the integrals over the products of Hilbert schemes of points on $S$. When $\cal{L}$ is the canonical bundle of $S$, the Vafa-Witten invariants defined recently by Tanaka-Thomas, can be extracted from these localized DT invariants. VW invariants are expected to have modular properties as predicted by S-duality.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2020.0011</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2020-04, Vol.142 (2), p.405-442 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_2384884757 |
source | Project MUSE eJournals - Premium Collection |
subjects | Bundling Dimensional stability Invariants Linear algebra Sheaves Topological manifolds |
title | Localized Donaldson-Thomas theory of surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Donaldson-Thomas%20theory%20of%20surfaces&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Gholampour,%20Amin&rft.date=2020-04-01&rft.volume=142&rft.issue=2&rft.spage=405&rft.epage=442&rft.pages=405-442&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2020.0011&rft_dat=%3Cproquest_cross%3E2384884757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384884757&rft_id=info:pmid/&rfr_iscdi=true |