The Orlicz Brunn–Minkowski Inequality for the Projection Body
A generalized Brunn–Minkowski inequality for the projection body is established in the framework of the Orlicz Brunn–Minkowski theory. This new inequality yields the Orlicz Brunn–Minkowski inequality for the intrinsic volume directly.
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2020-04, Vol.30 (2), p.2253-2272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2272 |
---|---|
container_issue | 2 |
container_start_page | 2253 |
container_title | The Journal of Geometric Analysis |
container_volume | 30 |
creator | Zou, Du Xiong, Ge |
description | A generalized Brunn–Minkowski inequality for the projection body is established in the framework of the Orlicz Brunn–Minkowski theory. This new inequality yields the Orlicz Brunn–Minkowski inequality for the intrinsic volume directly. |
doi_str_mv | 10.1007/s12220-019-00182-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2384861020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339957</galeid><sourcerecordid>A707339957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6d29d25e4fcf7c4b8a29f78d50a82ab76dff861a5d7af26d3c14ddb90496d4eb3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhiMEEqXwApwicU4ZO4uTE2orlkpF5VAkbpbjpbiL3dqJUDnxDrwhT4JLkLihOcyi_5sZ_VF0iWCAAMi1RxhjSABVCQAqcUKOoh7K80OLX45DDTkkRYWL0-jM-yVAVqQZ6UU381cZz9xa8_d45Fpjvj4-H7VZ2Te_0vHEyF3L1rrZx8q6uAnaJ2eXkjfamnhkxf48OlFs7eXFb-5Hz3e38_FDMp3dT8bDacLTvGySQuBK4FxmiivCs7pkuFKkFDmwErOaFEKpskAsF4QpXIiUo0yIuoKsKkQm67QfXXV7t87uWukburStM-EkxWmZBRYwBNWgUy3YWlJtlG0c4yGE3GhujVQ6zIcESJpWVU4CgDuAO-u9k4pund4wt6cI6MFZ2jlLg7P0x1l6gNIO8kFsFtL9_fIP9Q3zb3w9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384861020</pqid></control><display><type>article</type><title>The Orlicz Brunn–Minkowski Inequality for the Projection Body</title><source>SpringerLink Journals</source><creator>Zou, Du ; Xiong, Ge</creator><creatorcontrib>Zou, Du ; Xiong, Ge</creatorcontrib><description>A generalized Brunn–Minkowski inequality for the projection body is established in the framework of the Orlicz Brunn–Minkowski theory. This new inequality yields the Orlicz Brunn–Minkowski inequality for the intrinsic volume directly.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00182-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Equality ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Inequality ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2020-04, Vol.30 (2), p.2253-2272</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Mathematica Josephina, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6d29d25e4fcf7c4b8a29f78d50a82ab76dff861a5d7af26d3c14ddb90496d4eb3</citedby><cites>FETCH-LOGICAL-c358t-6d29d25e4fcf7c4b8a29f78d50a82ab76dff861a5d7af26d3c14ddb90496d4eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00182-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00182-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zou, Du</creatorcontrib><creatorcontrib>Xiong, Ge</creatorcontrib><title>The Orlicz Brunn–Minkowski Inequality for the Projection Body</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>A generalized Brunn–Minkowski inequality for the projection body is established in the framework of the Orlicz Brunn–Minkowski theory. This new inequality yields the Orlicz Brunn–Minkowski inequality for the intrinsic volume directly.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equality</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Inequality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhiMEEqXwApwicU4ZO4uTE2orlkpF5VAkbpbjpbiL3dqJUDnxDrwhT4JLkLihOcyi_5sZ_VF0iWCAAMi1RxhjSABVCQAqcUKOoh7K80OLX45DDTkkRYWL0-jM-yVAVqQZ6UU381cZz9xa8_d45Fpjvj4-H7VZ2Te_0vHEyF3L1rrZx8q6uAnaJ2eXkjfamnhkxf48OlFs7eXFb-5Hz3e38_FDMp3dT8bDacLTvGySQuBK4FxmiivCs7pkuFKkFDmwErOaFEKpskAsF4QpXIiUo0yIuoKsKkQm67QfXXV7t87uWukburStM-EkxWmZBRYwBNWgUy3YWlJtlG0c4yGE3GhujVQ6zIcESJpWVU4CgDuAO-u9k4pund4wt6cI6MFZ2jlLg7P0x1l6gNIO8kFsFtL9_fIP9Q3zb3w9</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zou, Du</creator><creator>Xiong, Ge</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20200401</creationdate><title>The Orlicz Brunn–Minkowski Inequality for the Projection Body</title><author>Zou, Du ; Xiong, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6d29d25e4fcf7c4b8a29f78d50a82ab76dff861a5d7af26d3c14ddb90496d4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equality</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Inequality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Du</creatorcontrib><creatorcontrib>Xiong, Ge</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Du</au><au>Xiong, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Orlicz Brunn–Minkowski Inequality for the Projection Body</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>2253</spage><epage>2272</epage><pages>2253-2272</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>A generalized Brunn–Minkowski inequality for the projection body is established in the framework of the Orlicz Brunn–Minkowski theory. This new inequality yields the Orlicz Brunn–Minkowski inequality for the intrinsic volume directly.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00182-7</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2020-04, Vol.30 (2), p.2253-2272 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2384861020 |
source | SpringerLink Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Equality Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Inequality Mathematics Mathematics and Statistics |
title | The Orlicz Brunn–Minkowski Inequality for the Projection Body |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Orlicz%20Brunn%E2%80%93Minkowski%20Inequality%20for%20the%20Projection%20Body&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Zou,%20Du&rft.date=2020-04-01&rft.volume=30&rft.issue=2&rft.spage=2253&rft.epage=2272&rft.pages=2253-2272&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00182-7&rft_dat=%3Cgale_proqu%3EA707339957%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384861020&rft_id=info:pmid/&rft_galeid=A707339957&rfr_iscdi=true |