The strong Atiyah and Lück approximation conjectures for one-relator groups
It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2020-04, Vol.376 (3-4), p.1741-1793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1793 |
---|---|
container_issue | 3-4 |
container_start_page | 1741 |
container_title | Mathematische annalen |
container_volume | 376 |
creator | Jaikin-Zapirain, Andrei López-Álvarez, Diego |
description | It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and the strong eigenvalue conjecture hold for these groups. As a byproduct we prove that the group algebra of a locally indicable group over a field of characteristic zero has a Hughes-free epic division algebra and, in particular, it is embedded in a division algebra. |
doi_str_mv | 10.1007/s00208-019-01926-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384860246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384860246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3fa2f214e01f1c221741ee6e37b102cbe0383810209d00613203a893a3f7e07b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bDrTRPnWFW8pEhcytly000flDjYqQT_xo0fwyVI3DisdqSdmd0dIS4RrhGguIkAGowCLA-lcwVHYoQZaYUGimMxSvOJmhjCU3EW4xYACGAyEtV8zTL2wbcrOe03H24tXbuU1ddn_SJd1wX_vnl1_ca3svbtlut-HzjKxgfpW1aBd65PeBX8vovn4qRxu8gXv30snu9u57MHVT3dP86mlaoJy15R43SjMWPABmutsciQOWcqFgi6XjCQIZMglEuAHEkDOVOSo6ZgKBY0FleDbzrvbc-xt1u_D21aaTWZzOSgszyx9MCqg48xcGO7kH4JHxbBHlKzQ2o2JWZ_UrOQRDSIYiK3Kw5_1v-ovgEiEW8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384860246</pqid></control><display><type>article</type><title>The strong Atiyah and Lück approximation conjectures for one-relator groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Jaikin-Zapirain, Andrei ; López-Álvarez, Diego</creator><creatorcontrib>Jaikin-Zapirain, Andrei ; López-Álvarez, Diego</creatorcontrib><description>It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and the strong eigenvalue conjecture hold for these groups. As a byproduct we prove that the group algebra of a locally indicable group over a field of characteristic zero has a Hughes-free epic division algebra and, in particular, it is embedded in a division algebra.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-019-01926-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Approximation ; Eigenvalues ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2020-04, Vol.376 (3-4), p.1741-1793</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3fa2f214e01f1c221741ee6e37b102cbe0383810209d00613203a893a3f7e07b3</citedby><cites>FETCH-LOGICAL-c319t-3fa2f214e01f1c221741ee6e37b102cbe0383810209d00613203a893a3f7e07b3</cites><orcidid>0000-0003-0958-2695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-019-01926-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-019-01926-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jaikin-Zapirain, Andrei</creatorcontrib><creatorcontrib>López-Álvarez, Diego</creatorcontrib><title>The strong Atiyah and Lück approximation conjectures for one-relator groups</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and the strong eigenvalue conjecture hold for these groups. As a byproduct we prove that the group algebra of a locally indicable group over a field of characteristic zero has a Hughes-free epic division algebra and, in particular, it is embedded in a division algebra.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bDrTRPnWFW8pEhcytly000flDjYqQT_xo0fwyVI3DisdqSdmd0dIS4RrhGguIkAGowCLA-lcwVHYoQZaYUGimMxSvOJmhjCU3EW4xYACGAyEtV8zTL2wbcrOe03H24tXbuU1ddn_SJd1wX_vnl1_ca3svbtlut-HzjKxgfpW1aBd65PeBX8vovn4qRxu8gXv30snu9u57MHVT3dP86mlaoJy15R43SjMWPABmutsciQOWcqFgi6XjCQIZMglEuAHEkDOVOSo6ZgKBY0FleDbzrvbc-xt1u_D21aaTWZzOSgszyx9MCqg48xcGO7kH4JHxbBHlKzQ2o2JWZ_UrOQRDSIYiK3Kw5_1v-ovgEiEW8k</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jaikin-Zapirain, Andrei</creator><creator>López-Álvarez, Diego</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0958-2695</orcidid></search><sort><creationdate>20200401</creationdate><title>The strong Atiyah and Lück approximation conjectures for one-relator groups</title><author>Jaikin-Zapirain, Andrei ; López-Álvarez, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3fa2f214e01f1c221741ee6e37b102cbe0383810209d00613203a893a3f7e07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaikin-Zapirain, Andrei</creatorcontrib><creatorcontrib>López-Álvarez, Diego</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaikin-Zapirain, Andrei</au><au>López-Álvarez, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strong Atiyah and Lück approximation conjectures for one-relator groups</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>376</volume><issue>3-4</issue><spage>1741</spage><epage>1793</epage><pages>1741-1793</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and the strong eigenvalue conjecture hold for these groups. As a byproduct we prove that the group algebra of a locally indicable group over a field of characteristic zero has a Hughes-free epic division algebra and, in particular, it is embedded in a division algebra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-019-01926-0</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0003-0958-2695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2020-04, Vol.376 (3-4), p.1741-1793 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2384860246 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Approximation Eigenvalues Mathematical analysis Mathematics Mathematics and Statistics |
title | The strong Atiyah and Lück approximation conjectures for one-relator groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strong%20Atiyah%20and%20L%C3%BCck%20approximation%20conjectures%20for%20one-relator%20groups&rft.jtitle=Mathematische%20annalen&rft.au=Jaikin-Zapirain,%20Andrei&rft.date=2020-04-01&rft.volume=376&rft.issue=3-4&rft.spage=1741&rft.epage=1793&rft.pages=1741-1793&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-019-01926-0&rft_dat=%3Cproquest_cross%3E2384860246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384860246&rft_id=info:pmid/&rfr_iscdi=true |