Generalized Langevin Equations for Systems with Local Interactions

We present a new method to approximate the Mori–Zwanzig (MZ) memory integral in generalized Langevin equations describing the evolution of smooth observables in high-dimensional nonlinear systems with local interactions. Building upon the Faber operator series we recently developed for the orthogona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2020-03, Vol.178 (5), p.1217-1247
Hauptverfasser: Zhu, Yuanran, Venturi, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new method to approximate the Mori–Zwanzig (MZ) memory integral in generalized Langevin equations describing the evolution of smooth observables in high-dimensional nonlinear systems with local interactions. Building upon the Faber operator series we recently developed for the orthogonal dynamics propagator, and an exact combinatorial algorithm that allows us to compute memory kernels from first principles, we demonstrate that the proposed method is effective in computing auto-correlation functions, intermediate scattering functions and other important statistical properties of the observable. We also develop a new stochastic process representation of the MZ fluctuation term for systems in statistical equilibrium. Numerical applications are presented for the Fermi–Pasta–Ulam model, and for random wave propagation in homegeneous media.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-020-02499-y