Estimating efficiency effects in a panel data stochastic frontier model
This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency sc...
Gespeichert in:
Veröffentlicht in: | Journal of productivity analysis 2020-04, Vol.53 (2), p.163-180 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | Journal of productivity analysis |
container_volume | 53 |
creator | Paul, Satya Shankar, Sriram |
description | This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model. |
doi_str_mv | 10.1007/s11123-019-00568-3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2384703610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48741137</jstor_id><sourcerecordid>48741137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxFr9ARMTEtej7wEDzNI0Wk1M3GjijlAG6jTtTAW68O-ljrE7VxC45z44hFwi3CCAuk2IyHgF2FQAtdQVPyITrFU5EgKPyQR0U1e1ZO-n5CylFQA0WjUTMr9PudvY3PVL6kPoXOd797XfepcT7Xpq6db2fk1bmy1NeXAftiCOhjj0ufORbobWr8_JSbDr5C9-1yl5e7h_nT1Wzy_zp9ndc-WEqnOF6ITgVteLlgnBAnPe89ZbkJphaIQX3raNdgpwAa2TUgQLIqCw6MrrNZ-S67F3G4fPnU_ZrIZd7MtIw7gWCrhEKCk2plwcUoo-mG0sv4xfBsHshZlRmCnCzI8wwwtER8i7oe_SAVEAsmZcyBLhYySVy37p42H6v8VXI7Uq-uJfr9BKIHLFvwEUiIGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384703610</pqid></control><display><type>article</type><title>Estimating efficiency effects in a panel data stochastic frontier model</title><source>Business Source Complete</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Paul, Satya ; Shankar, Sriram</creator><creatorcontrib>Paul, Satya ; Shankar, Sriram</creatorcontrib><description>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1007/s11123-019-00568-3</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Accounting/Auditing ; Data envelopment analysis ; Econometrics ; Economics ; Economics and Finance ; Efficiency ; Estimating techniques ; Farmers ; Longitudinal studies ; Microeconomics ; Monte Carlo simulation ; Operations Research/Decision Theory ; Productivity</subject><ispartof>Journal of productivity analysis, 2020-04, Vol.53 (2), p.163-180</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Productivity Analysis is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</citedby><cites>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48741137$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48741137$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids></links><search><creatorcontrib>Paul, Satya</creatorcontrib><creatorcontrib>Shankar, Sriram</creatorcontrib><title>Estimating efficiency effects in a panel data stochastic frontier model</title><title>Journal of productivity analysis</title><addtitle>J Prod Anal</addtitle><description>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</description><subject>Accounting/Auditing</subject><subject>Data envelopment analysis</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Efficiency</subject><subject>Estimating techniques</subject><subject>Farmers</subject><subject>Longitudinal studies</subject><subject>Microeconomics</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Productivity</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFOAyEURYnRxFr9ARMTEtej7wEDzNI0Wk1M3GjijlAG6jTtTAW68O-ljrE7VxC45z44hFwi3CCAuk2IyHgF2FQAtdQVPyITrFU5EgKPyQR0U1e1ZO-n5CylFQA0WjUTMr9PudvY3PVL6kPoXOd797XfepcT7Xpq6db2fk1bmy1NeXAftiCOhjj0ufORbobWr8_JSbDr5C9-1yl5e7h_nT1Wzy_zp9ndc-WEqnOF6ITgVteLlgnBAnPe89ZbkJphaIQX3raNdgpwAa2TUgQLIqCw6MrrNZ-S67F3G4fPnU_ZrIZd7MtIw7gWCrhEKCk2plwcUoo-mG0sv4xfBsHshZlRmCnCzI8wwwtER8i7oe_SAVEAsmZcyBLhYySVy37p42H6v8VXI7Uq-uJfr9BKIHLFvwEUiIGc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Paul, Satya</creator><creator>Shankar, Sriram</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Estimating efficiency effects in a panel data stochastic frontier model</title><author>Paul, Satya ; Shankar, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accounting/Auditing</topic><topic>Data envelopment analysis</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Efficiency</topic><topic>Estimating techniques</topic><topic>Farmers</topic><topic>Longitudinal studies</topic><topic>Microeconomics</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Productivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Satya</creatorcontrib><creatorcontrib>Shankar, Sriram</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Satya</au><au>Shankar, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating efficiency effects in a panel data stochastic frontier model</atitle><jtitle>Journal of productivity analysis</jtitle><stitle>J Prod Anal</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>163</spage><epage>180</epage><pages>163-180</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11123-019-00568-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-562X |
ispartof | Journal of productivity analysis, 2020-04, Vol.53 (2), p.163-180 |
issn | 0895-562X 1573-0441 |
language | eng |
recordid | cdi_proquest_journals_2384703610 |
source | Business Source Complete; Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Accounting/Auditing Data envelopment analysis Econometrics Economics Economics and Finance Efficiency Estimating techniques Farmers Longitudinal studies Microeconomics Monte Carlo simulation Operations Research/Decision Theory Productivity |
title | Estimating efficiency effects in a panel data stochastic frontier model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20efficiency%20effects%20in%20a%20panel%20data%20stochastic%20frontier%20model&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=Paul,%20Satya&rft.date=2020-04-01&rft.volume=53&rft.issue=2&rft.spage=163&rft.epage=180&rft.pages=163-180&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1007/s11123-019-00568-3&rft_dat=%3Cjstor_proqu%3E48741137%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384703610&rft_id=info:pmid/&rft_jstor_id=48741137&rfr_iscdi=true |