Estimating efficiency effects in a panel data stochastic frontier model

This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of productivity analysis 2020-04, Vol.53 (2), p.163-180
Hauptverfasser: Paul, Satya, Shankar, Sriram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 163
container_title Journal of productivity analysis
container_volume 53
creator Paul, Satya
Shankar, Sriram
description This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.
doi_str_mv 10.1007/s11123-019-00568-3
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2384703610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48741137</jstor_id><sourcerecordid>48741137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</originalsourceid><addsrcrecordid>eNp9kMFOAyEURYnRxFr9ARMTEtej7wEDzNI0Wk1M3GjijlAG6jTtTAW68O-ljrE7VxC45z44hFwi3CCAuk2IyHgF2FQAtdQVPyITrFU5EgKPyQR0U1e1ZO-n5CylFQA0WjUTMr9PudvY3PVL6kPoXOd797XfepcT7Xpq6db2fk1bmy1NeXAftiCOhjj0ufORbobWr8_JSbDr5C9-1yl5e7h_nT1Wzy_zp9ndc-WEqnOF6ITgVteLlgnBAnPe89ZbkJphaIQX3raNdgpwAa2TUgQLIqCw6MrrNZ-S67F3G4fPnU_ZrIZd7MtIw7gWCrhEKCk2plwcUoo-mG0sv4xfBsHshZlRmCnCzI8wwwtER8i7oe_SAVEAsmZcyBLhYySVy37p42H6v8VXI7Uq-uJfr9BKIHLFvwEUiIGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384703610</pqid></control><display><type>article</type><title>Estimating efficiency effects in a panel data stochastic frontier model</title><source>Business Source Complete</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Paul, Satya ; Shankar, Sriram</creator><creatorcontrib>Paul, Satya ; Shankar, Sriram</creatorcontrib><description>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1007/s11123-019-00568-3</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Accounting/Auditing ; Data envelopment analysis ; Econometrics ; Economics ; Economics and Finance ; Efficiency ; Estimating techniques ; Farmers ; Longitudinal studies ; Microeconomics ; Monte Carlo simulation ; Operations Research/Decision Theory ; Productivity</subject><ispartof>Journal of productivity analysis, 2020-04, Vol.53 (2), p.163-180</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Productivity Analysis is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</citedby><cites>FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48741137$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48741137$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids></links><search><creatorcontrib>Paul, Satya</creatorcontrib><creatorcontrib>Shankar, Sriram</creatorcontrib><title>Estimating efficiency effects in a panel data stochastic frontier model</title><title>Journal of productivity analysis</title><addtitle>J Prod Anal</addtitle><description>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</description><subject>Accounting/Auditing</subject><subject>Data envelopment analysis</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Efficiency</subject><subject>Estimating techniques</subject><subject>Farmers</subject><subject>Longitudinal studies</subject><subject>Microeconomics</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Productivity</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFOAyEURYnRxFr9ARMTEtej7wEDzNI0Wk1M3GjijlAG6jTtTAW68O-ljrE7VxC45z44hFwi3CCAuk2IyHgF2FQAtdQVPyITrFU5EgKPyQR0U1e1ZO-n5CylFQA0WjUTMr9PudvY3PVL6kPoXOd797XfepcT7Xpq6db2fk1bmy1NeXAftiCOhjj0ufORbobWr8_JSbDr5C9-1yl5e7h_nT1Wzy_zp9ndc-WEqnOF6ITgVteLlgnBAnPe89ZbkJphaIQX3raNdgpwAa2TUgQLIqCw6MrrNZ-S67F3G4fPnU_ZrIZd7MtIw7gWCrhEKCk2plwcUoo-mG0sv4xfBsHshZlRmCnCzI8wwwtER8i7oe_SAVEAsmZcyBLhYySVy37p42H6v8VXI7Uq-uJfr9BKIHLFvwEUiIGc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Paul, Satya</creator><creator>Shankar, Sriram</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Estimating efficiency effects in a panel data stochastic frontier model</title><author>Paul, Satya ; Shankar, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-11c443a85bd2442f2cee3dea06821f94e4ead98c701b0dc664fa04f14a1c56283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accounting/Auditing</topic><topic>Data envelopment analysis</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Efficiency</topic><topic>Estimating techniques</topic><topic>Farmers</topic><topic>Longitudinal studies</topic><topic>Microeconomics</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Productivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Satya</creatorcontrib><creatorcontrib>Shankar, Sriram</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Satya</au><au>Shankar, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating efficiency effects in a panel data stochastic frontier model</atitle><jtitle>Journal of productivity analysis</jtitle><stitle>J Prod Anal</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>163</spage><epage>180</epage><pages>163-180</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. The model is within-transformed and then estimated with non-linear least squares. The finite sample properties of the proposed estimator are investigated through a set of Monte Carlo experiments. The experiments suggest that our estimation procedure generally performs well also in small samples. Finally, an empirical illustration based on widely used panel data on Indian farmers reveals the simplicity and easy applicability of the model.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11123-019-00568-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-562X
ispartof Journal of productivity analysis, 2020-04, Vol.53 (2), p.163-180
issn 0895-562X
1573-0441
language eng
recordid cdi_proquest_journals_2384703610
source Business Source Complete; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Accounting/Auditing
Data envelopment analysis
Econometrics
Economics
Economics and Finance
Efficiency
Estimating techniques
Farmers
Longitudinal studies
Microeconomics
Monte Carlo simulation
Operations Research/Decision Theory
Productivity
title Estimating efficiency effects in a panel data stochastic frontier model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20efficiency%20effects%20in%20a%20panel%20data%20stochastic%20frontier%20model&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=Paul,%20Satya&rft.date=2020-04-01&rft.volume=53&rft.issue=2&rft.spage=163&rft.epage=180&rft.pages=163-180&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1007/s11123-019-00568-3&rft_dat=%3Cjstor_proqu%3E48741137%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384703610&rft_id=info:pmid/&rft_jstor_id=48741137&rfr_iscdi=true