Variable Accretion onto Protoplanet Host Star PDS 70
The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variabil...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-04, Vol.892 (2), p.81 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 81 |
container_title | The Astrophysical journal |
container_volume | 892 |
creator | Thanathibodee, Thanawuth Molina, Brandon Calvet, Nuria Serna, Javier Bae, Jaehan Reynolds, Mark Hernández, Jesús Muzerolle, James Hernández, Ramiro Franco |
description | The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variability based on Transiting Exoplanet Survey Satellite and High-Accuracy Radial velocity Planetary Searcher (HARPS) observations. The stellar light curve shows a strong signal with a 3.03 0.06 days period, which we attribute to stellar rotation. Our analysis of the HARPS spectra shows a rotational velocity of , indicating that the inclination of the rotation axis is 50° 8°. This implies that the rotation axes of the star and its circumstellar disk are parallel within the measurement error. We apply magnetospheric accretion models to fit the profiles of the H line and derive mass accretion rates onto the star in the range of , varying over the rotation phase. The measured accretion rates are in agreement with those estimated from near-UV fluxes using accretion shock models. The derived accretion rates are higher than expected from the disk mass and planets' properties for the low values of the viscous parameter suggested by recent studies, potentially pointing to an additional mass reservoir in the inner disk to feed the accretion, such as a dead zone. We find that the He I λ10830 line shows a blueshifted absorption feature, indicative of a wind. The mass-loss rate estimated from the line depth is consistent with an accretion-driven inner disk MHD wind. |
doi_str_mv | 10.3847/1538-4357/ab77c1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2384572112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384572112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-74ed660d83f7584d11e8e572b3f1c9b6020d712ad6207583a633f487b6c4d8a93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3jwGvrs3XJtljqdYKBQtV8RaySRa2rJs1SQ_-e7Os6MnTMMMz7zAPANcY3VHJxAKXVBaMlmKhayEMPgGz39EpmCGEWMGpeD8HFzEexpZU1QywNx1aXXcOLo0JLrW-h75PHu6CT37odO8S3PiY4D7pAHf3eyjQJThrdBfd1U-dg9f1w8tqU2yfH59Wy21hGOapEMxZzpGVtBGlZBZjJ10pSE0bbKqaI4KswERbTlAGqOaUNkyKmhtmpa7oHNxMuUPwn0cXkzr4Y-jzSUXy0zkKY5IpNFEm-BiDa9QQ2g8dvhRGanSjRhFqFKEmN3nldlpp_fCX-S_-DdiyYkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384572112</pqid></control><display><type>article</type><title>Variable Accretion onto Protoplanet Host Star PDS 70</title><source>IOP_英国物理学会OA刊</source><creator>Thanathibodee, Thanawuth ; Molina, Brandon ; Calvet, Nuria ; Serna, Javier ; Bae, Jaehan ; Reynolds, Mark ; Hernández, Jesús ; Muzerolle, James ; Hernández, Ramiro Franco</creator><creatorcontrib>Thanathibodee, Thanawuth ; Molina, Brandon ; Calvet, Nuria ; Serna, Javier ; Bae, Jaehan ; Reynolds, Mark ; Hernández, Jesús ; Muzerolle, James ; Hernández, Ramiro Franco</creatorcontrib><description>The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variability based on Transiting Exoplanet Survey Satellite and High-Accuracy Radial velocity Planetary Searcher (HARPS) observations. The stellar light curve shows a strong signal with a 3.03 0.06 days period, which we attribute to stellar rotation. Our analysis of the HARPS spectra shows a rotational velocity of , indicating that the inclination of the rotation axis is 50° 8°. This implies that the rotation axes of the star and its circumstellar disk are parallel within the measurement error. We apply magnetospheric accretion models to fit the profiles of the H line and derive mass accretion rates onto the star in the range of , varying over the rotation phase. The measured accretion rates are in agreement with those estimated from near-UV fluxes using accretion shock models. The derived accretion rates are higher than expected from the disk mass and planets' properties for the low values of the viscous parameter suggested by recent studies, potentially pointing to an additional mass reservoir in the inner disk to feed the accretion, such as a dead zone. We find that the He I λ10830 line shows a blueshifted absorption feature, indicative of a wind. The mass-loss rate estimated from the line depth is consistent with an accretion-driven inner disk MHD wind.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab77c1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; Accretion disks ; Astrophysics ; Error analysis ; Extrasolar planets ; Fluxes ; H alpha line ; H I line emission ; Inclination ; Light curve ; Magnetospheres ; Planet detection ; Protoplanetary disks ; Protoplanets ; Radial velocity ; Rotational spectra ; Stars ; Stars & galaxies ; Stellar accretion ; Stellar mass ; Stellar mass accretion ; Stellar rotation ; Stellar winds ; T Tauri stars ; Transit ; Wind</subject><ispartof>The Astrophysical journal, 2020-04, Vol.892 (2), p.81</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-74ed660d83f7584d11e8e572b3f1c9b6020d712ad6207583a633f487b6c4d8a93</citedby><cites>FETCH-LOGICAL-c416t-74ed660d83f7584d11e8e572b3f1c9b6020d712ad6207583a633f487b6c4d8a93</cites><orcidid>0000-0002-1650-3740 ; 0000-0002-3950-5386 ; 0000-0002-5943-1222 ; 0000-0003-1621-9392 ; 0000-0003-4507-1710 ; 0000-0001-7351-6540 ; 0000-0001-7258-770X ; 0000-0001-9797-5661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77c1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab77c1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Thanathibodee, Thanawuth</creatorcontrib><creatorcontrib>Molina, Brandon</creatorcontrib><creatorcontrib>Calvet, Nuria</creatorcontrib><creatorcontrib>Serna, Javier</creatorcontrib><creatorcontrib>Bae, Jaehan</creatorcontrib><creatorcontrib>Reynolds, Mark</creatorcontrib><creatorcontrib>Hernández, Jesús</creatorcontrib><creatorcontrib>Muzerolle, James</creatorcontrib><creatorcontrib>Hernández, Ramiro Franco</creatorcontrib><title>Variable Accretion onto Protoplanet Host Star PDS 70</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variability based on Transiting Exoplanet Survey Satellite and High-Accuracy Radial velocity Planetary Searcher (HARPS) observations. The stellar light curve shows a strong signal with a 3.03 0.06 days period, which we attribute to stellar rotation. Our analysis of the HARPS spectra shows a rotational velocity of , indicating that the inclination of the rotation axis is 50° 8°. This implies that the rotation axes of the star and its circumstellar disk are parallel within the measurement error. We apply magnetospheric accretion models to fit the profiles of the H line and derive mass accretion rates onto the star in the range of , varying over the rotation phase. The measured accretion rates are in agreement with those estimated from near-UV fluxes using accretion shock models. The derived accretion rates are higher than expected from the disk mass and planets' properties for the low values of the viscous parameter suggested by recent studies, potentially pointing to an additional mass reservoir in the inner disk to feed the accretion, such as a dead zone. We find that the He I λ10830 line shows a blueshifted absorption feature, indicative of a wind. The mass-loss rate estimated from the line depth is consistent with an accretion-driven inner disk MHD wind.</description><subject>Accretion</subject><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Error analysis</subject><subject>Extrasolar planets</subject><subject>Fluxes</subject><subject>H alpha line</subject><subject>H I line emission</subject><subject>Inclination</subject><subject>Light curve</subject><subject>Magnetospheres</subject><subject>Planet detection</subject><subject>Protoplanetary disks</subject><subject>Protoplanets</subject><subject>Radial velocity</subject><subject>Rotational spectra</subject><subject>Stars</subject><subject>Stars & galaxies</subject><subject>Stellar accretion</subject><subject>Stellar mass</subject><subject>Stellar mass accretion</subject><subject>Stellar rotation</subject><subject>Stellar winds</subject><subject>T Tauri stars</subject><subject>Transit</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3jwGvrs3XJtljqdYKBQtV8RaySRa2rJs1SQ_-e7Os6MnTMMMz7zAPANcY3VHJxAKXVBaMlmKhayEMPgGz39EpmCGEWMGpeD8HFzEexpZU1QywNx1aXXcOLo0JLrW-h75PHu6CT37odO8S3PiY4D7pAHf3eyjQJThrdBfd1U-dg9f1w8tqU2yfH59Wy21hGOapEMxZzpGVtBGlZBZjJ10pSE0bbKqaI4KswERbTlAGqOaUNkyKmhtmpa7oHNxMuUPwn0cXkzr4Y-jzSUXy0zkKY5IpNFEm-BiDa9QQ2g8dvhRGanSjRhFqFKEmN3nldlpp_fCX-S_-DdiyYkg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Thanathibodee, Thanawuth</creator><creator>Molina, Brandon</creator><creator>Calvet, Nuria</creator><creator>Serna, Javier</creator><creator>Bae, Jaehan</creator><creator>Reynolds, Mark</creator><creator>Hernández, Jesús</creator><creator>Muzerolle, James</creator><creator>Hernández, Ramiro Franco</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1650-3740</orcidid><orcidid>https://orcid.org/0000-0002-3950-5386</orcidid><orcidid>https://orcid.org/0000-0002-5943-1222</orcidid><orcidid>https://orcid.org/0000-0003-1621-9392</orcidid><orcidid>https://orcid.org/0000-0003-4507-1710</orcidid><orcidid>https://orcid.org/0000-0001-7351-6540</orcidid><orcidid>https://orcid.org/0000-0001-7258-770X</orcidid><orcidid>https://orcid.org/0000-0001-9797-5661</orcidid></search><sort><creationdate>20200401</creationdate><title>Variable Accretion onto Protoplanet Host Star PDS 70</title><author>Thanathibodee, Thanawuth ; Molina, Brandon ; Calvet, Nuria ; Serna, Javier ; Bae, Jaehan ; Reynolds, Mark ; Hernández, Jesús ; Muzerolle, James ; Hernández, Ramiro Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-74ed660d83f7584d11e8e572b3f1c9b6020d712ad6207583a633f487b6c4d8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion</topic><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Error analysis</topic><topic>Extrasolar planets</topic><topic>Fluxes</topic><topic>H alpha line</topic><topic>H I line emission</topic><topic>Inclination</topic><topic>Light curve</topic><topic>Magnetospheres</topic><topic>Planet detection</topic><topic>Protoplanetary disks</topic><topic>Protoplanets</topic><topic>Radial velocity</topic><topic>Rotational spectra</topic><topic>Stars</topic><topic>Stars & galaxies</topic><topic>Stellar accretion</topic><topic>Stellar mass</topic><topic>Stellar mass accretion</topic><topic>Stellar rotation</topic><topic>Stellar winds</topic><topic>T Tauri stars</topic><topic>Transit</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanathibodee, Thanawuth</creatorcontrib><creatorcontrib>Molina, Brandon</creatorcontrib><creatorcontrib>Calvet, Nuria</creatorcontrib><creatorcontrib>Serna, Javier</creatorcontrib><creatorcontrib>Bae, Jaehan</creatorcontrib><creatorcontrib>Reynolds, Mark</creatorcontrib><creatorcontrib>Hernández, Jesús</creatorcontrib><creatorcontrib>Muzerolle, James</creatorcontrib><creatorcontrib>Hernández, Ramiro Franco</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thanathibodee, Thanawuth</au><au>Molina, Brandon</au><au>Calvet, Nuria</au><au>Serna, Javier</au><au>Bae, Jaehan</au><au>Reynolds, Mark</au><au>Hernández, Jesús</au><au>Muzerolle, James</au><au>Hernández, Ramiro Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Accretion onto Protoplanet Host Star PDS 70</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>892</volume><issue>2</issue><spage>81</spage><pages>81-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variability based on Transiting Exoplanet Survey Satellite and High-Accuracy Radial velocity Planetary Searcher (HARPS) observations. The stellar light curve shows a strong signal with a 3.03 0.06 days period, which we attribute to stellar rotation. Our analysis of the HARPS spectra shows a rotational velocity of , indicating that the inclination of the rotation axis is 50° 8°. This implies that the rotation axes of the star and its circumstellar disk are parallel within the measurement error. We apply magnetospheric accretion models to fit the profiles of the H line and derive mass accretion rates onto the star in the range of , varying over the rotation phase. The measured accretion rates are in agreement with those estimated from near-UV fluxes using accretion shock models. The derived accretion rates are higher than expected from the disk mass and planets' properties for the low values of the viscous parameter suggested by recent studies, potentially pointing to an additional mass reservoir in the inner disk to feed the accretion, such as a dead zone. We find that the He I λ10830 line shows a blueshifted absorption feature, indicative of a wind. The mass-loss rate estimated from the line depth is consistent with an accretion-driven inner disk MHD wind.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab77c1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1650-3740</orcidid><orcidid>https://orcid.org/0000-0002-3950-5386</orcidid><orcidid>https://orcid.org/0000-0002-5943-1222</orcidid><orcidid>https://orcid.org/0000-0003-1621-9392</orcidid><orcidid>https://orcid.org/0000-0003-4507-1710</orcidid><orcidid>https://orcid.org/0000-0001-7351-6540</orcidid><orcidid>https://orcid.org/0000-0001-7258-770X</orcidid><orcidid>https://orcid.org/0000-0001-9797-5661</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-04, Vol.892 (2), p.81 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2384572112 |
source | IOP_英国物理学会OA刊 |
subjects | Accretion Accretion disks Astrophysics Error analysis Extrasolar planets Fluxes H alpha line H I line emission Inclination Light curve Magnetospheres Planet detection Protoplanetary disks Protoplanets Radial velocity Rotational spectra Stars Stars & galaxies Stellar accretion Stellar mass Stellar mass accretion Stellar rotation Stellar winds T Tauri stars Transit Wind |
title | Variable Accretion onto Protoplanet Host Star PDS 70 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Accretion%20onto%20Protoplanet%20Host%20Star%20PDS%2070&rft.jtitle=The%20Astrophysical%20journal&rft.au=Thanathibodee,%20Thanawuth&rft.date=2020-04-01&rft.volume=892&rft.issue=2&rft.spage=81&rft.pages=81-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab77c1&rft_dat=%3Cproquest_O3W%3E2384572112%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384572112&rft_id=info:pmid/&rfr_iscdi=true |