Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes

It remains a challenge for flexible supercapacitors to maintain high electrochemical performance under high compressive stress and subzero temperature conditions simultaneously. Here, a highly compressible and superior low temperature tolerant supercapacitor is fabricated comprising a designed dual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-04, Vol.8 (13), p.6219-6228
Hauptverfasser: Liu, Zhenzhen, Zhang, Junmei, Liu, Jing, Long, Yanjun, Fang, Liming, Wang, Qingwen, Liu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6228
container_issue 13
container_start_page 6219
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Liu, Zhenzhen
Zhang, Junmei
Liu, Jing
Long, Yanjun
Fang, Liming
Wang, Qingwen
Liu, Tao
description It remains a challenge for flexible supercapacitors to maintain high electrochemical performance under high compressive stress and subzero temperature conditions simultaneously. Here, a highly compressible and superior low temperature tolerant supercapacitor is fabricated comprising a designed dual chemically crosslinked PVA hydrogel electrolyte (DN + EG hydrogel) by incorporating an EG/H 2 O binary solvent. The synthesized DN + EG hydrogel displays a significant improvement of compressive stress compared to a single chemically crosslinked PVA hydrogel (25-fold) and a DN − EG hydrogel (5.3-fold), and also exhibits a high compressive stress (15.5 MPa), excellent shape recovery properties and a high ionic conductivity (0.48 S m −1 ) even at −40 °C. These impressive compressibility and anti-freezing properties benefit from the increased hydrogen bonding interactions between the first and second networks, and the solvent molecules and polymer chains. Remarkably, the fabricated supercapacitors show a high capacitance retention under strong compressive stress (nearly 100% retention) or after four thousand cycles of 180° bending (86.5% retention) at −30 °C, displaying prominent compression-resistant properties at subzero temperature. It is believed that this work paves a new way for developing high performance compression-resistant energy storage devices which are compatible with extremely cold environments. A highly compressible and superior low-temperature tolerant supercapacitor is constructed based on a novel dual chemically crosslinked PVA hydrogel electrolyte.
doi_str_mv 10.1039/c9ta12424a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384564784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384564784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-37b6b00fa650b73d1c0e8d11cd7c126da5477f1d9ce65a4ab7b8eb50819caa8b3</originalsourceid><addsrcrecordid>eNp9kcFOwzAMhisEEtPYhTtSEDekQdKmbXqcJmBIk-AwuFZO4m4dWVOSVGhvwGPTbWjc8MW2_Om39TuKLhm9YzQp7lURgMU85nASDWKa0nHOi-z0WAtxHo28X9M-BKVZUQyi71m9XJktUXbTOvS-lgYJNJr4rkVXW0eM_SIBN30HoXNIgjV92YQDoaAFVQfrPJHgURPbEN2BIWqFm1qB2Wk7672pm49-_Po-IautdnaJhqBBFZw124D-IjqrwHgc_eZh9Pb4sJjOxvOXp-fpZD5WCedhnOQyk5RWkKVU5olmiqLQjCmdKxZnGlKe5xXThcIsBQ4ylwJlSgUrFICQyTC6Oei2zn526EO5tp1r-pVlnAieZjwXvKduD9T-dodV2bp6A25bMlruzC6nxWKyN3vSw9cH2Hl15P6eUba66pmr_5jkBy4pix4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384564784</pqid></control><display><type>article</type><title>Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes</title><source>Royal Society Of Chemistry Journals</source><creator>Liu, Zhenzhen ; Zhang, Junmei ; Liu, Jing ; Long, Yanjun ; Fang, Liming ; Wang, Qingwen ; Liu, Tao</creator><creatorcontrib>Liu, Zhenzhen ; Zhang, Junmei ; Liu, Jing ; Long, Yanjun ; Fang, Liming ; Wang, Qingwen ; Liu, Tao</creatorcontrib><description>It remains a challenge for flexible supercapacitors to maintain high electrochemical performance under high compressive stress and subzero temperature conditions simultaneously. Here, a highly compressible and superior low temperature tolerant supercapacitor is fabricated comprising a designed dual chemically crosslinked PVA hydrogel electrolyte (DN + EG hydrogel) by incorporating an EG/H 2 O binary solvent. The synthesized DN + EG hydrogel displays a significant improvement of compressive stress compared to a single chemically crosslinked PVA hydrogel (25-fold) and a DN − EG hydrogel (5.3-fold), and also exhibits a high compressive stress (15.5 MPa), excellent shape recovery properties and a high ionic conductivity (0.48 S m −1 ) even at −40 °C. These impressive compressibility and anti-freezing properties benefit from the increased hydrogen bonding interactions between the first and second networks, and the solvent molecules and polymer chains. Remarkably, the fabricated supercapacitors show a high capacitance retention under strong compressive stress (nearly 100% retention) or after four thousand cycles of 180° bending (86.5% retention) at −30 °C, displaying prominent compression-resistant properties at subzero temperature. It is believed that this work paves a new way for developing high performance compression-resistant energy storage devices which are compatible with extremely cold environments. A highly compressible and superior low-temperature tolerant supercapacitor is constructed based on a novel dual chemically crosslinked PVA hydrogel electrolyte.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta12424a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Compressibility ; Compression ; Crosslinking ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Energy storage ; Freezing ; Hydrogels ; Hydrogen bonding ; Ion currents ; Low temperature ; Polymers ; Properties (attributes) ; Retention ; Solvents ; Stress ; Subzero temperature ; Supercapacitors ; Temperature tolerance</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (13), p.6219-6228</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-37b6b00fa650b73d1c0e8d11cd7c126da5477f1d9ce65a4ab7b8eb50819caa8b3</citedby><cites>FETCH-LOGICAL-c344t-37b6b00fa650b73d1c0e8d11cd7c126da5477f1d9ce65a4ab7b8eb50819caa8b3</cites><orcidid>0000-0002-8651-1682 ; 0000-0001-5988-9922 ; 0000-0003-3453-9840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zhenzhen</creatorcontrib><creatorcontrib>Zhang, Junmei</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Long, Yanjun</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Qingwen</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><title>Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>It remains a challenge for flexible supercapacitors to maintain high electrochemical performance under high compressive stress and subzero temperature conditions simultaneously. Here, a highly compressible and superior low temperature tolerant supercapacitor is fabricated comprising a designed dual chemically crosslinked PVA hydrogel electrolyte (DN + EG hydrogel) by incorporating an EG/H 2 O binary solvent. The synthesized DN + EG hydrogel displays a significant improvement of compressive stress compared to a single chemically crosslinked PVA hydrogel (25-fold) and a DN − EG hydrogel (5.3-fold), and also exhibits a high compressive stress (15.5 MPa), excellent shape recovery properties and a high ionic conductivity (0.48 S m −1 ) even at −40 °C. These impressive compressibility and anti-freezing properties benefit from the increased hydrogen bonding interactions between the first and second networks, and the solvent molecules and polymer chains. Remarkably, the fabricated supercapacitors show a high capacitance retention under strong compressive stress (nearly 100% retention) or after four thousand cycles of 180° bending (86.5% retention) at −30 °C, displaying prominent compression-resistant properties at subzero temperature. It is believed that this work paves a new way for developing high performance compression-resistant energy storage devices which are compatible with extremely cold environments. A highly compressible and superior low-temperature tolerant supercapacitor is constructed based on a novel dual chemically crosslinked PVA hydrogel electrolyte.</description><subject>Capacitance</subject><subject>Compressibility</subject><subject>Compression</subject><subject>Crosslinking</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Hydrogen bonding</subject><subject>Ion currents</subject><subject>Low temperature</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Retention</subject><subject>Solvents</subject><subject>Stress</subject><subject>Subzero temperature</subject><subject>Supercapacitors</subject><subject>Temperature tolerance</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFOwzAMhisEEtPYhTtSEDekQdKmbXqcJmBIk-AwuFZO4m4dWVOSVGhvwGPTbWjc8MW2_Om39TuKLhm9YzQp7lURgMU85nASDWKa0nHOi-z0WAtxHo28X9M-BKVZUQyi71m9XJktUXbTOvS-lgYJNJr4rkVXW0eM_SIBN30HoXNIgjV92YQDoaAFVQfrPJHgURPbEN2BIWqFm1qB2Wk7672pm49-_Po-IautdnaJhqBBFZw124D-IjqrwHgc_eZh9Pb4sJjOxvOXp-fpZD5WCedhnOQyk5RWkKVU5olmiqLQjCmdKxZnGlKe5xXThcIsBQ4ylwJlSgUrFICQyTC6Oei2zn526EO5tp1r-pVlnAieZjwXvKduD9T-dodV2bp6A25bMlruzC6nxWKyN3vSw9cH2Hl15P6eUba66pmr_5jkBy4pix4</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Liu, Zhenzhen</creator><creator>Zhang, Junmei</creator><creator>Liu, Jing</creator><creator>Long, Yanjun</creator><creator>Fang, Liming</creator><creator>Wang, Qingwen</creator><creator>Liu, Tao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8651-1682</orcidid><orcidid>https://orcid.org/0000-0001-5988-9922</orcidid><orcidid>https://orcid.org/0000-0003-3453-9840</orcidid></search><sort><creationdate>20200407</creationdate><title>Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes</title><author>Liu, Zhenzhen ; Zhang, Junmei ; Liu, Jing ; Long, Yanjun ; Fang, Liming ; Wang, Qingwen ; Liu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-37b6b00fa650b73d1c0e8d11cd7c126da5477f1d9ce65a4ab7b8eb50819caa8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Compressibility</topic><topic>Compression</topic><topic>Crosslinking</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Hydrogen bonding</topic><topic>Ion currents</topic><topic>Low temperature</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Retention</topic><topic>Solvents</topic><topic>Stress</topic><topic>Subzero temperature</topic><topic>Supercapacitors</topic><topic>Temperature tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhenzhen</creatorcontrib><creatorcontrib>Zhang, Junmei</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Long, Yanjun</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Qingwen</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhenzhen</au><au>Zhang, Junmei</au><au>Liu, Jing</au><au>Long, Yanjun</au><au>Fang, Liming</au><au>Wang, Qingwen</au><au>Liu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-04-07</date><risdate>2020</risdate><volume>8</volume><issue>13</issue><spage>6219</spage><epage>6228</epage><pages>6219-6228</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>It remains a challenge for flexible supercapacitors to maintain high electrochemical performance under high compressive stress and subzero temperature conditions simultaneously. Here, a highly compressible and superior low temperature tolerant supercapacitor is fabricated comprising a designed dual chemically crosslinked PVA hydrogel electrolyte (DN + EG hydrogel) by incorporating an EG/H 2 O binary solvent. The synthesized DN + EG hydrogel displays a significant improvement of compressive stress compared to a single chemically crosslinked PVA hydrogel (25-fold) and a DN − EG hydrogel (5.3-fold), and also exhibits a high compressive stress (15.5 MPa), excellent shape recovery properties and a high ionic conductivity (0.48 S m −1 ) even at −40 °C. These impressive compressibility and anti-freezing properties benefit from the increased hydrogen bonding interactions between the first and second networks, and the solvent molecules and polymer chains. Remarkably, the fabricated supercapacitors show a high capacitance retention under strong compressive stress (nearly 100% retention) or after four thousand cycles of 180° bending (86.5% retention) at −30 °C, displaying prominent compression-resistant properties at subzero temperature. It is believed that this work paves a new way for developing high performance compression-resistant energy storage devices which are compatible with extremely cold environments. A highly compressible and superior low-temperature tolerant supercapacitor is constructed based on a novel dual chemically crosslinked PVA hydrogel electrolyte.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta12424a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8651-1682</orcidid><orcidid>https://orcid.org/0000-0001-5988-9922</orcidid><orcidid>https://orcid.org/0000-0003-3453-9840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (13), p.6219-6228
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2384564784
source Royal Society Of Chemistry Journals
subjects Capacitance
Compressibility
Compression
Crosslinking
Electrochemical analysis
Electrochemistry
Electrolytes
Energy storage
Freezing
Hydrogels
Hydrogen bonding
Ion currents
Low temperature
Polymers
Properties (attributes)
Retention
Solvents
Stress
Subzero temperature
Supercapacitors
Temperature tolerance
title Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20compressible%20and%20superior%20low%20temperature%20tolerant%20supercapacitors%20based%20on%20dual%20chemically%20crosslinked%20PVA%20hydrogel%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Zhenzhen&rft.date=2020-04-07&rft.volume=8&rft.issue=13&rft.spage=6219&rft.epage=6228&rft.pages=6219-6228&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta12424a&rft_dat=%3Cproquest_cross%3E2384564784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384564784&rft_id=info:pmid/&rfr_iscdi=true