Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors
In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2020-03, Vol.229 (6-7), p.1211-1230 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1230 |
---|---|
container_issue | 6-7 |
container_start_page | 1211 |
container_title | The European physical journal. ST, Special topics |
container_volume | 229 |
creator | Tamba, Victor Kamdoum Kom, Guillaume Honoré Kingni, Sifeu Takougang Mboupda Pone, Justin Roger Fotsin, Hilaire Bertrand |
description | In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current approaches, but by modifying the well-known two-dimensional Lotka-Volterra system. The equilibrium point of the integer-order system is determined and its stability analysis is studied using Routh-Hurwitz criterion. When the selected bifurcation parameter is varied, the system exhibits various dynamical behaviors and features including intermittency route to chaos, chaotic bursting oscillations and offset boosting. Moreover, the fractional-order form of the system is examined through bifurcation analysis. It is revealed that chaotic behaviors still exist in the system with order less than four. To validate the numerical approaches, a corresponding electronic circuit for the model in its integer and fractional order form is designed and implemented in Orcard-Pspice software. The Pspice results are consistent with those from the numerical simulations. |
doi_str_mv | 10.1140/epjst/e2020-900169-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384554212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384554212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-849ea292a8937d254871308acbd30cf45dca4d1688589616e76e4e3e67ba9b83</originalsourceid><addsrcrecordid>eNp9kc1uGyEURkdVKzVN8wZZIHVNw-8YllHUNJUiZZM9wnAnxhqDy8Wq_DB91-Bxo-6yAsF3ji58w3DN2XfOFbuB_RbbDQgmGLWM8dFS_mG44FZzOirGP77tpdafhy-IW8b0KKy8GP7eZj8fMSHxORKYIbRacgokpBoOqZG028-wg9x8SyWTMvUgSbnBC1S6QFP14XTnZ1pqhEqmcqg0pg7hckzCxpfWnXjEBjvyJ7VNF00IjaxLwZbyy2LapBghE9_aSVkqfh0-TX5GuPq3Xg7P9z-e7x7o49PPX3e3jzRIoRs1yoIXVnhj5SoKrcyKS2Z8WEfJwqR0DF5FPhqjjR35CKsRFEgYV2tv10ZeDt_O2n0tvw-AzW37E_rk6IQ0SmsluOgpdU6FWhArTG5f087Xo-PMnXpwSw9u6cGde3C8Y_qMYY_n_mv_5e9yrxiPkqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384554212</pqid></control><display><type>article</type><title>Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors</title><source>SpringerNature Journals</source><creator>Tamba, Victor Kamdoum ; Kom, Guillaume Honoré ; Kingni, Sifeu Takougang ; Mboupda Pone, Justin Roger ; Fotsin, Hilaire Bertrand</creator><creatorcontrib>Tamba, Victor Kamdoum ; Kom, Guillaume Honoré ; Kingni, Sifeu Takougang ; Mboupda Pone, Justin Roger ; Fotsin, Hilaire Bertrand</creatorcontrib><description>In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current approaches, but by modifying the well-known two-dimensional Lotka-Volterra system. The equilibrium point of the integer-order system is determined and its stability analysis is studied using Routh-Hurwitz criterion. When the selected bifurcation parameter is varied, the system exhibits various dynamical behaviors and features including intermittency route to chaos, chaotic bursting oscillations and offset boosting. Moreover, the fractional-order form of the system is examined through bifurcation analysis. It is revealed that chaotic behaviors still exist in the system with order less than four. To validate the numerical approaches, a corresponding electronic circuit for the model in its integer and fractional order form is designed and implemented in Orcard-Pspice software. The Pspice results are consistent with those from the numerical simulations.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900169-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Bifurcations ; Chaos theory ; Circuits ; Classical and Continuum Physics ; Computer simulation ; Condensed Matter Physics ; Electronic circuits ; Integers ; Materials Science ; Mathematical models ; Measurement Science and Instrumentation ; Molecular ; Nonlinear systems ; Numerical methods ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Routh-Hurwitz criterion ; Special Chaotic Systems ; Stability analysis</subject><ispartof>The European physical journal. ST, Special topics, 2020-03, Vol.229 (6-7), p.1211-1230</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-849ea292a8937d254871308acbd30cf45dca4d1688589616e76e4e3e67ba9b83</citedby><cites>FETCH-LOGICAL-c325t-849ea292a8937d254871308acbd30cf45dca4d1688589616e76e4e3e67ba9b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2020-900169-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2020-900169-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tamba, Victor Kamdoum</creatorcontrib><creatorcontrib>Kom, Guillaume Honoré</creatorcontrib><creatorcontrib>Kingni, Sifeu Takougang</creatorcontrib><creatorcontrib>Mboupda Pone, Justin Roger</creatorcontrib><creatorcontrib>Fotsin, Hilaire Bertrand</creatorcontrib><title>Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current approaches, but by modifying the well-known two-dimensional Lotka-Volterra system. The equilibrium point of the integer-order system is determined and its stability analysis is studied using Routh-Hurwitz criterion. When the selected bifurcation parameter is varied, the system exhibits various dynamical behaviors and features including intermittency route to chaos, chaotic bursting oscillations and offset boosting. Moreover, the fractional-order form of the system is examined through bifurcation analysis. It is revealed that chaotic behaviors still exist in the system with order less than four. To validate the numerical approaches, a corresponding electronic circuit for the model in its integer and fractional order form is designed and implemented in Orcard-Pspice software. The Pspice results are consistent with those from the numerical simulations.</description><subject>Atomic</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Electronic circuits</subject><subject>Integers</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Routh-Hurwitz criterion</subject><subject>Special Chaotic Systems</subject><subject>Stability analysis</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uGyEURkdVKzVN8wZZIHVNw-8YllHUNJUiZZM9wnAnxhqDy8Wq_DB91-Bxo-6yAsF3ji58w3DN2XfOFbuB_RbbDQgmGLWM8dFS_mG44FZzOirGP77tpdafhy-IW8b0KKy8GP7eZj8fMSHxORKYIbRacgokpBoOqZG028-wg9x8SyWTMvUgSbnBC1S6QFP14XTnZ1pqhEqmcqg0pg7hckzCxpfWnXjEBjvyJ7VNF00IjaxLwZbyy2LapBghE9_aSVkqfh0-TX5GuPq3Xg7P9z-e7x7o49PPX3e3jzRIoRs1yoIXVnhj5SoKrcyKS2Z8WEfJwqR0DF5FPhqjjR35CKsRFEgYV2tv10ZeDt_O2n0tvw-AzW37E_rk6IQ0SmsluOgpdU6FWhArTG5f087Xo-PMnXpwSw9u6cGde3C8Y_qMYY_n_mv_5e9yrxiPkqE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tamba, Victor Kamdoum</creator><creator>Kom, Guillaume Honoré</creator><creator>Kingni, Sifeu Takougang</creator><creator>Mboupda Pone, Justin Roger</creator><creator>Fotsin, Hilaire Bertrand</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors</title><author>Tamba, Victor Kamdoum ; Kom, Guillaume Honoré ; Kingni, Sifeu Takougang ; Mboupda Pone, Justin Roger ; Fotsin, Hilaire Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-849ea292a8937d254871308acbd30cf45dca4d1688589616e76e4e3e67ba9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Electronic circuits</topic><topic>Integers</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Routh-Hurwitz criterion</topic><topic>Special Chaotic Systems</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamba, Victor Kamdoum</creatorcontrib><creatorcontrib>Kom, Guillaume Honoré</creatorcontrib><creatorcontrib>Kingni, Sifeu Takougang</creatorcontrib><creatorcontrib>Mboupda Pone, Justin Roger</creatorcontrib><creatorcontrib>Fotsin, Hilaire Bertrand</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamba, Victor Kamdoum</au><au>Kom, Guillaume Honoré</au><au>Kingni, Sifeu Takougang</au><au>Mboupda Pone, Justin Roger</au><au>Fotsin, Hilaire Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>229</volume><issue>6-7</issue><spage>1211</spage><epage>1230</epage><pages>1211-1230</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this paper, an integer- and fractional-order form of a four-dimensional (4-D) chaotic system with hidden attractors is investigated using theoretical/numerical and analogue methods. The system is constructed not through the extension of a three-dimensional existing nonlinear system as in current approaches, but by modifying the well-known two-dimensional Lotka-Volterra system. The equilibrium point of the integer-order system is determined and its stability analysis is studied using Routh-Hurwitz criterion. When the selected bifurcation parameter is varied, the system exhibits various dynamical behaviors and features including intermittency route to chaos, chaotic bursting oscillations and offset boosting. Moreover, the fractional-order form of the system is examined through bifurcation analysis. It is revealed that chaotic behaviors still exist in the system with order less than four. To validate the numerical approaches, a corresponding electronic circuit for the model in its integer and fractional order form is designed and implemented in Orcard-Pspice software. The Pspice results are consistent with those from the numerical simulations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900169-1</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2020-03, Vol.229 (6-7), p.1211-1230 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2384554212 |
source | SpringerNature Journals |
subjects | Atomic Bifurcations Chaos theory Circuits Classical and Continuum Physics Computer simulation Condensed Matter Physics Electronic circuits Integers Materials Science Mathematical models Measurement Science and Instrumentation Molecular Nonlinear systems Numerical methods Optical and Plasma Physics Physics Physics and Astronomy Regular Article Routh-Hurwitz criterion Special Chaotic Systems Stability analysis |
title | Analysis and electronic circuit implementation of an integer- and fractional-order four-dimensional chaotic system with offset boosting and hidden attractors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20electronic%20circuit%20implementation%20of%20an%20integer-%20and%20fractional-order%20four-dimensional%20chaotic%20system%20with%20offset%20boosting%20and%20hidden%20attractors&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Tamba,%20Victor%20Kamdoum&rft.date=2020-03-01&rft.volume=229&rft.issue=6-7&rft.spage=1211&rft.epage=1230&rft.pages=1211-1230&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900169-1&rft_dat=%3Cproquest_cross%3E2384554212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384554212&rft_id=info:pmid/&rfr_iscdi=true |