On the splashing of high-speed drops impacting a dry surface

When a drop impacts a dry surface at high velocity, it atomises into secondary droplets. These small droplets are generated by one of two types of splashes: either by a prompt splash from the spreading rim at the surface or by a thin corona splash, which levitates from the surface. This study invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-06, Vol.892, Article A2
Hauptverfasser: Burzynski, David A., Roisman, Ilia V., Bansmer, Stephan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 892
creator Burzynski, David A.
Roisman, Ilia V.
Bansmer, Stephan E.
description When a drop impacts a dry surface at high velocity, it atomises into secondary droplets. These small droplets are generated by one of two types of splashes: either by a prompt splash from the spreading rim at the surface or by a thin corona splash, which levitates from the surface. This study investigates the splashing mechanisms experimentally using multiple high-resolution cameras and characterises the outcome of both splashing types at high Weber and Reynolds numbers. We demonstrate that the prompt splash is well described by the Rayleigh–Taylor instability of the rapidly advancing liquid lamella and determine the boundaries defining this splashing regime, which allows us to distinguish the prompt from the corona splash. Furthermore, we provide an expression to estimate the elapsed time during which the secondary droplets are generated, which is then implemented in the theory of Riboux & Gordillo ( Phys. Rev. Lett. , vol. 113 (2), 2014, 024507). This theoretical approach together with detailed quantification of the splashing outcome allows us to completely predict the outcome of both splashing types, which includes the mean size, velocity and total ejected volume of the secondary droplets. The detailed model proposed here can be indeed used to understand, characterise and predict more accurately the underlying physics in several applications.
doi_str_mv 10.1017/jfm.2020.168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384469886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384469886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-22bca659bfe13fb2ef8d1a03bf0d104a0dace358f41952eeb6fe3223d1cb41d73</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMouK7e_AABr3adSdq0BS-yuCos7EXPIWmSbcv2j0l72G9vynoaZubxHu9HyCPCBgHzl9Z1GwYsbqK4IitMRZnkIs2uyQqAsQSRwS25C6EFQA5lviKvh55OtaVhPKlQN_2RDo7WzbFOwmitocYPY6BNN6pqWr4qXs40zN6pyt6TG6dOwT78zzX52b1_bz-T_eHja_u2Tyou8ilhTFdKZKV2FrnTzLrCoAKuHRiEVIGJXjwrXIplxqzVwlnOGDdY6RRNztfk6eI7-uF3tmGS7TD7PkZKxos01iwKEVXPF1XlhxC8dXL0Taf8WSLIhY-MfOTCR0Y-_A_-9Fg-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384469886</pqid></control><display><type>article</type><title>On the splashing of high-speed drops impacting a dry surface</title><source>Cambridge Journals</source><creator>Burzynski, David A. ; Roisman, Ilia V. ; Bansmer, Stephan E.</creator><creatorcontrib>Burzynski, David A. ; Roisman, Ilia V. ; Bansmer, Stephan E.</creatorcontrib><description>When a drop impacts a dry surface at high velocity, it atomises into secondary droplets. These small droplets are generated by one of two types of splashes: either by a prompt splash from the spreading rim at the surface or by a thin corona splash, which levitates from the surface. This study investigates the splashing mechanisms experimentally using multiple high-resolution cameras and characterises the outcome of both splashing types at high Weber and Reynolds numbers. We demonstrate that the prompt splash is well described by the Rayleigh–Taylor instability of the rapidly advancing liquid lamella and determine the boundaries defining this splashing regime, which allows us to distinguish the prompt from the corona splash. Furthermore, we provide an expression to estimate the elapsed time during which the secondary droplets are generated, which is then implemented in the theory of Riboux &amp; Gordillo ( Phys. Rev. Lett. , vol. 113 (2), 2014, 024507). This theoretical approach together with detailed quantification of the splashing outcome allows us to completely predict the outcome of both splashing types, which includes the mean size, velocity and total ejected volume of the secondary droplets. The detailed model proposed here can be indeed used to understand, characterise and predict more accurately the underlying physics in several applications.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.168</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aircraft ; Cameras ; Droplets ; Experiments ; Fluid flow ; Fluid mechanics ; Lamella ; Numerical analysis ; Physics ; Reynolds number ; Splashing ; Taylor instability ; Velocity</subject><ispartof>Journal of fluid mechanics, 2020-06, Vol.892, Article A2</ispartof><rights>Copyright Cambridge University Press Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-22bca659bfe13fb2ef8d1a03bf0d104a0dace358f41952eeb6fe3223d1cb41d73</citedby><cites>FETCH-LOGICAL-c367t-22bca659bfe13fb2ef8d1a03bf0d104a0dace358f41952eeb6fe3223d1cb41d73</cites><orcidid>0000-0002-9878-3650 ; 0000-0002-2718-7990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Burzynski, David A.</creatorcontrib><creatorcontrib>Roisman, Ilia V.</creatorcontrib><creatorcontrib>Bansmer, Stephan E.</creatorcontrib><title>On the splashing of high-speed drops impacting a dry surface</title><title>Journal of fluid mechanics</title><description>When a drop impacts a dry surface at high velocity, it atomises into secondary droplets. These small droplets are generated by one of two types of splashes: either by a prompt splash from the spreading rim at the surface or by a thin corona splash, which levitates from the surface. This study investigates the splashing mechanisms experimentally using multiple high-resolution cameras and characterises the outcome of both splashing types at high Weber and Reynolds numbers. We demonstrate that the prompt splash is well described by the Rayleigh–Taylor instability of the rapidly advancing liquid lamella and determine the boundaries defining this splashing regime, which allows us to distinguish the prompt from the corona splash. Furthermore, we provide an expression to estimate the elapsed time during which the secondary droplets are generated, which is then implemented in the theory of Riboux &amp; Gordillo ( Phys. Rev. Lett. , vol. 113 (2), 2014, 024507). This theoretical approach together with detailed quantification of the splashing outcome allows us to completely predict the outcome of both splashing types, which includes the mean size, velocity and total ejected volume of the secondary droplets. The detailed model proposed here can be indeed used to understand, characterise and predict more accurately the underlying physics in several applications.</description><subject>Aircraft</subject><subject>Cameras</subject><subject>Droplets</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Lamella</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Splashing</subject><subject>Taylor instability</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE9LxDAQxYMouK7e_AABr3adSdq0BS-yuCos7EXPIWmSbcv2j0l72G9vynoaZubxHu9HyCPCBgHzl9Z1GwYsbqK4IitMRZnkIs2uyQqAsQSRwS25C6EFQA5lviKvh55OtaVhPKlQN_2RDo7WzbFOwmitocYPY6BNN6pqWr4qXs40zN6pyt6TG6dOwT78zzX52b1_bz-T_eHja_u2Tyou8ilhTFdKZKV2FrnTzLrCoAKuHRiEVIGJXjwrXIplxqzVwlnOGDdY6RRNztfk6eI7-uF3tmGS7TD7PkZKxos01iwKEVXPF1XlhxC8dXL0Taf8WSLIhY-MfOTCR0Y-_A_-9Fg-</recordid><startdate>20200610</startdate><enddate>20200610</enddate><creator>Burzynski, David A.</creator><creator>Roisman, Ilia V.</creator><creator>Bansmer, Stephan E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9878-3650</orcidid><orcidid>https://orcid.org/0000-0002-2718-7990</orcidid></search><sort><creationdate>20200610</creationdate><title>On the splashing of high-speed drops impacting a dry surface</title><author>Burzynski, David A. ; Roisman, Ilia V. ; Bansmer, Stephan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-22bca659bfe13fb2ef8d1a03bf0d104a0dace358f41952eeb6fe3223d1cb41d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aircraft</topic><topic>Cameras</topic><topic>Droplets</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Lamella</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Splashing</topic><topic>Taylor instability</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burzynski, David A.</creatorcontrib><creatorcontrib>Roisman, Ilia V.</creatorcontrib><creatorcontrib>Bansmer, Stephan E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burzynski, David A.</au><au>Roisman, Ilia V.</au><au>Bansmer, Stephan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the splashing of high-speed drops impacting a dry surface</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-06-10</date><risdate>2020</risdate><volume>892</volume><artnum>A2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>When a drop impacts a dry surface at high velocity, it atomises into secondary droplets. These small droplets are generated by one of two types of splashes: either by a prompt splash from the spreading rim at the surface or by a thin corona splash, which levitates from the surface. This study investigates the splashing mechanisms experimentally using multiple high-resolution cameras and characterises the outcome of both splashing types at high Weber and Reynolds numbers. We demonstrate that the prompt splash is well described by the Rayleigh–Taylor instability of the rapidly advancing liquid lamella and determine the boundaries defining this splashing regime, which allows us to distinguish the prompt from the corona splash. Furthermore, we provide an expression to estimate the elapsed time during which the secondary droplets are generated, which is then implemented in the theory of Riboux &amp; Gordillo ( Phys. Rev. Lett. , vol. 113 (2), 2014, 024507). This theoretical approach together with detailed quantification of the splashing outcome allows us to completely predict the outcome of both splashing types, which includes the mean size, velocity and total ejected volume of the secondary droplets. The detailed model proposed here can be indeed used to understand, characterise and predict more accurately the underlying physics in several applications.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.168</doi><orcidid>https://orcid.org/0000-0002-9878-3650</orcidid><orcidid>https://orcid.org/0000-0002-2718-7990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-06, Vol.892, Article A2
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2384469886
source Cambridge Journals
subjects Aircraft
Cameras
Droplets
Experiments
Fluid flow
Fluid mechanics
Lamella
Numerical analysis
Physics
Reynolds number
Splashing
Taylor instability
Velocity
title On the splashing of high-speed drops impacting a dry surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20splashing%20of%20high-speed%20drops%20impacting%20a%20dry%20surface&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Burzynski,%20David%20A.&rft.date=2020-06-10&rft.volume=892&rft.artnum=A2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.168&rft_dat=%3Cproquest_cross%3E2384469886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384469886&rft_id=info:pmid/&rfr_iscdi=true