Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates
Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versi...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2020-03, Vol.2020 (11-12), p.1011-1017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 11-12 |
container_start_page | 1011 |
container_title | European journal of inorganic chemistry |
container_volume | 2020 |
creator | Kingsbury, Alex Brough, Steve McCarthy, Antonio Pedrina Lewis, William Woodward, Simon |
description | Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography).
Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species. |
doi_str_mv | 10.1002/ejic.201901036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384437411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384437411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxoMouK5ePRe8KGzXyZ92m-OyrO7KgiB6DmmTampt1qZFe_MRvPiCPompK4p48JDMMHy_b4YPoUMMYwxATnVhsjEBzAEDjbfQAAPnIcQJ2fY9oyzEnCW7aM-5AgCoFw3Q28xWRXsrGx1MlTKNsVVwZdtGu6CxAXl_eZ2W913pKxlR_ytz16naPramsqWp_IQd48WJr7byjKzUL4j59wk8d77DI_LXQvtR75zJOvWy0p_i9tFOLkunD77qEN2cza9ni3B1eb6cTVdhRqNJHGpOIIk55VxLDlHCdUpIrjGGlFCJlWQp4AirnGUEPBHlE6W4ZsCVhDwDOkRHG991f492jShsW1d-pSA0YYxOGMZeNd6osto6V-tcrGvzIOtOYBB99KKPXnxH7wG-AZ5Mqbt_1GJ-sZz9sB9UK5Qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384437411</pqid></control><display><type>article</type><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><source>Wiley Online Library</source><creator>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</creator><creatorcontrib>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</creatorcontrib><description>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography).
Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201901036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alanes ; Allyl compounds ; Asymmetric catalysis ; Carboxylates ; Chemical reactions ; Copper ; Crystallography ; Halogens ; Inorganic chemistry ; Michael addition ; Phosphane ligands ; Selectivity</subject><ispartof>European journal of inorganic chemistry, 2020-03, Vol.2020 (11-12), p.1011-1017</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</citedby><cites>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</cites><orcidid>0000-0001-8539-6232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201901036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201901036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kingsbury, Alex</creatorcontrib><creatorcontrib>Brough, Steve</creatorcontrib><creatorcontrib>McCarthy, Antonio Pedrina</creatorcontrib><creatorcontrib>Lewis, William</creatorcontrib><creatorcontrib>Woodward, Simon</creatorcontrib><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><title>European journal of inorganic chemistry</title><description>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography).
Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</description><subject>Alanes</subject><subject>Allyl compounds</subject><subject>Asymmetric catalysis</subject><subject>Carboxylates</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Crystallography</subject><subject>Halogens</subject><subject>Inorganic chemistry</subject><subject>Michael addition</subject><subject>Phosphane ligands</subject><subject>Selectivity</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KxDAQxoMouK5ePRe8KGzXyZ92m-OyrO7KgiB6DmmTampt1qZFe_MRvPiCPompK4p48JDMMHy_b4YPoUMMYwxATnVhsjEBzAEDjbfQAAPnIcQJ2fY9oyzEnCW7aM-5AgCoFw3Q28xWRXsrGx1MlTKNsVVwZdtGu6CxAXl_eZ2W913pKxlR_ytz16naPramsqWp_IQd48WJr7byjKzUL4j59wk8d77DI_LXQvtR75zJOvWy0p_i9tFOLkunD77qEN2cza9ni3B1eb6cTVdhRqNJHGpOIIk55VxLDlHCdUpIrjGGlFCJlWQp4AirnGUEPBHlE6W4ZsCVhDwDOkRHG991f492jShsW1d-pSA0YYxOGMZeNd6osto6V-tcrGvzIOtOYBB99KKPXnxH7wG-AZ5Mqbt_1GJ-sZz9sB9UK5Qu</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Kingsbury, Alex</creator><creator>Brough, Steve</creator><creator>McCarthy, Antonio Pedrina</creator><creator>Lewis, William</creator><creator>Woodward, Simon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8539-6232</orcidid></search><sort><creationdate>20200327</creationdate><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><author>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanes</topic><topic>Allyl compounds</topic><topic>Asymmetric catalysis</topic><topic>Carboxylates</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Crystallography</topic><topic>Halogens</topic><topic>Inorganic chemistry</topic><topic>Michael addition</topic><topic>Phosphane ligands</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsbury, Alex</creatorcontrib><creatorcontrib>Brough, Steve</creatorcontrib><creatorcontrib>McCarthy, Antonio Pedrina</creatorcontrib><creatorcontrib>Lewis, William</creatorcontrib><creatorcontrib>Woodward, Simon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsbury, Alex</au><au>Brough, Steve</au><au>McCarthy, Antonio Pedrina</au><au>Lewis, William</au><au>Woodward, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2020-03-27</date><risdate>2020</risdate><volume>2020</volume><issue>11-12</issue><spage>1011</spage><epage>1017</epage><pages>1011-1017</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography).
Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201901036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8539-6232</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2020-03, Vol.2020 (11-12), p.1011-1017 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_journals_2384437411 |
source | Wiley Online Library |
subjects | Alanes Allyl compounds Asymmetric catalysis Carboxylates Chemical reactions Copper Crystallography Halogens Inorganic chemistry Michael addition Phosphane ligands Selectivity |
title | Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20Addition%20Routes%20to%202%E2%80%90Alkyl%E2%80%902,3%E2%80%90dihydroquinolin%E2%80%904(1H)%E2%80%90ones%20and%202%E2%80%90Alkyl%E2%80%904%E2%80%90hydroxy%E2%80%901,2%E2%80%90dihydroquinoline%E2%80%903%E2%80%90carboxylates&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Kingsbury,%20Alex&rft.date=2020-03-27&rft.volume=2020&rft.issue=11-12&rft.spage=1011&rft.epage=1017&rft.pages=1011-1017&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201901036&rft_dat=%3Cproquest_cross%3E2384437411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384437411&rft_id=info:pmid/&rfr_iscdi=true |