Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates

Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2020-03, Vol.2020 (11-12), p.1011-1017
Hauptverfasser: Kingsbury, Alex, Brough, Steve, McCarthy, Antonio Pedrina, Lewis, William, Woodward, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 11-12
container_start_page 1011
container_title European journal of inorganic chemistry
container_volume 2020
creator Kingsbury, Alex
Brough, Steve
McCarthy, Antonio Pedrina
Lewis, William
Woodward, Simon
description Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography). Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.
doi_str_mv 10.1002/ejic.201901036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384437411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384437411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxoMouK5ePRe8KGzXyZ92m-OyrO7KgiB6DmmTampt1qZFe_MRvPiCPompK4p48JDMMHy_b4YPoUMMYwxATnVhsjEBzAEDjbfQAAPnIcQJ2fY9oyzEnCW7aM-5AgCoFw3Q28xWRXsrGx1MlTKNsVVwZdtGu6CxAXl_eZ2W913pKxlR_ytz16naPramsqWp_IQd48WJr7byjKzUL4j59wk8d77DI_LXQvtR75zJOvWy0p_i9tFOLkunD77qEN2cza9ni3B1eb6cTVdhRqNJHGpOIIk55VxLDlHCdUpIrjGGlFCJlWQp4AirnGUEPBHlE6W4ZsCVhDwDOkRHG991f492jShsW1d-pSA0YYxOGMZeNd6osto6V-tcrGvzIOtOYBB99KKPXnxH7wG-AZ5Mqbt_1GJ-sZz9sB9UK5Qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384437411</pqid></control><display><type>article</type><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><source>Wiley Online Library</source><creator>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</creator><creatorcontrib>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</creatorcontrib><description>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography). Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201901036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alanes ; Allyl compounds ; Asymmetric catalysis ; Carboxylates ; Chemical reactions ; Copper ; Crystallography ; Halogens ; Inorganic chemistry ; Michael addition ; Phosphane ligands ; Selectivity</subject><ispartof>European journal of inorganic chemistry, 2020-03, Vol.2020 (11-12), p.1011-1017</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</citedby><cites>FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</cites><orcidid>0000-0001-8539-6232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201901036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201901036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kingsbury, Alex</creatorcontrib><creatorcontrib>Brough, Steve</creatorcontrib><creatorcontrib>McCarthy, Antonio Pedrina</creatorcontrib><creatorcontrib>Lewis, William</creatorcontrib><creatorcontrib>Woodward, Simon</creatorcontrib><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><title>European journal of inorganic chemistry</title><description>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography). Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</description><subject>Alanes</subject><subject>Allyl compounds</subject><subject>Asymmetric catalysis</subject><subject>Carboxylates</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Crystallography</subject><subject>Halogens</subject><subject>Inorganic chemistry</subject><subject>Michael addition</subject><subject>Phosphane ligands</subject><subject>Selectivity</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KxDAQxoMouK5ePRe8KGzXyZ92m-OyrO7KgiB6DmmTampt1qZFe_MRvPiCPompK4p48JDMMHy_b4YPoUMMYwxATnVhsjEBzAEDjbfQAAPnIcQJ2fY9oyzEnCW7aM-5AgCoFw3Q28xWRXsrGx1MlTKNsVVwZdtGu6CxAXl_eZ2W913pKxlR_ytz16naPramsqWp_IQd48WJr7byjKzUL4j59wk8d77DI_LXQvtR75zJOvWy0p_i9tFOLkunD77qEN2cza9ni3B1eb6cTVdhRqNJHGpOIIk55VxLDlHCdUpIrjGGlFCJlWQp4AirnGUEPBHlE6W4ZsCVhDwDOkRHG991f492jShsW1d-pSA0YYxOGMZeNd6osto6V-tcrGvzIOtOYBB99KKPXnxH7wG-AZ5Mqbt_1GJ-sZz9sB9UK5Qu</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Kingsbury, Alex</creator><creator>Brough, Steve</creator><creator>McCarthy, Antonio Pedrina</creator><creator>Lewis, William</creator><creator>Woodward, Simon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8539-6232</orcidid></search><sort><creationdate>20200327</creationdate><title>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</title><author>Kingsbury, Alex ; Brough, Steve ; McCarthy, Antonio Pedrina ; Lewis, William ; Woodward, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-e920869399ea90589eb22fe110b23a1da4b0151df4c203575f7dd9e409da0fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanes</topic><topic>Allyl compounds</topic><topic>Asymmetric catalysis</topic><topic>Carboxylates</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Crystallography</topic><topic>Halogens</topic><topic>Inorganic chemistry</topic><topic>Michael addition</topic><topic>Phosphane ligands</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsbury, Alex</creatorcontrib><creatorcontrib>Brough, Steve</creatorcontrib><creatorcontrib>McCarthy, Antonio Pedrina</creatorcontrib><creatorcontrib>Lewis, William</creatorcontrib><creatorcontrib>Woodward, Simon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsbury, Alex</au><au>Brough, Steve</au><au>McCarthy, Antonio Pedrina</au><au>Lewis, William</au><au>Woodward, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2020-03-27</date><risdate>2020</risdate><volume>2020</volume><issue>11-12</issue><spage>1011</spage><epage>1017</epage><pages>1011-1017</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Under CuBr·SMe2/PPh3 catalysis (5/10 mol‐%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4‐addition to Cbz or Boc protected quinolin‐4(1H)‐ones to provide 2‐alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc‐protected ethyl 6‐substituted 4(1H)‐quinolone‐3‐carboxylates (6‐R group = all halogens, n/i/t‐alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6‐R = H). Ligand (S)‐(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)‐quinolone‐3‐carboxylate. Allylation and deprotection of a representative 1,4‐addition product example confirm the facial selectivity (X‐ray crystallography). Directing ester functions (R = CO2Et) “give a big hand” to copper catalysed 1,4‐additions of organometallics to medicinally relevant quinolin‐4(1H)‐ones. In the absence of any directing group only 11 % ee is realised for the addition of EtMgBr. In the presence of the CO2Et activating group, AlEt3 may be added in up to 82 % ee providing 6‐halo building block starting materials for quinolone species.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201901036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8539-6232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2020-03, Vol.2020 (11-12), p.1011-1017
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_2384437411
source Wiley Online Library
subjects Alanes
Allyl compounds
Asymmetric catalysis
Carboxylates
Chemical reactions
Copper
Crystallography
Halogens
Inorganic chemistry
Michael addition
Phosphane ligands
Selectivity
title Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1H)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20Addition%20Routes%20to%202%E2%80%90Alkyl%E2%80%902,3%E2%80%90dihydroquinolin%E2%80%904(1H)%E2%80%90ones%20and%202%E2%80%90Alkyl%E2%80%904%E2%80%90hydroxy%E2%80%901,2%E2%80%90dihydroquinoline%E2%80%903%E2%80%90carboxylates&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Kingsbury,%20Alex&rft.date=2020-03-27&rft.volume=2020&rft.issue=11-12&rft.spage=1011&rft.epage=1017&rft.pages=1011-1017&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201901036&rft_dat=%3Cproquest_cross%3E2384437411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384437411&rft_id=info:pmid/&rfr_iscdi=true