Efficient parallel implementation of reservoir computing systems

Reservoir computing (RC) is a powerful machine learning methodology well suited for time-series processing. The hardware implementation of RC systems (HRC) may extend the utility of this neural approach to solve real-life problems for which software solutions are not satisfactory. Nevertheless, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-04, Vol.32 (7), p.2299-2313
Hauptverfasser: Alomar, M. L., Skibinsky-Gitlin, Erik S., Frasser, Christiam F., Canals, Vincent, Isern, Eugeni, Roca, Miquel, Rosselló, Josep L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2313
container_issue 7
container_start_page 2299
container_title Neural computing & applications
container_volume 32
creator Alomar, M. L.
Skibinsky-Gitlin, Erik S.
Frasser, Christiam F.
Canals, Vincent
Isern, Eugeni
Roca, Miquel
Rosselló, Josep L.
description Reservoir computing (RC) is a powerful machine learning methodology well suited for time-series processing. The hardware implementation of RC systems (HRC) may extend the utility of this neural approach to solve real-life problems for which software solutions are not satisfactory. Nevertheless, the implementation of massive parallel-connected reservoir networks is costly in terms of circuit area and power, mainly due to the requirement of implementing synapse multipliers that increase gate count to prohibitive values. Most HRC systems present in the literature solve this area problem by sequencializing the processes, thus loosing the expected fault-tolerance and low latency of fully parallel-connected HRCs. Therefore, the development of new methodologies to implement fully parallel HRC systems is of high interest to many computational intelligence applications requiring quick responses. In this article, we propose a compact hardware implementation for Echo-State Networks (an specific type of reservoir) that reduces the area cost by simplifying the synapses and using linear piece-wise activation functions for neurons. The proposed design is synthesized in a Field-Programmable Gate Array and evaluated for different time-series prediction tasks. Without compromising the overall accuracy, the proposed approach achieves a significant saving in terms of power and hardware when compared with recently published implementations. This technique pave the way for the low-power implementation of fully parallel reservoir networks containing thousands of neurons in a single integrated circuit.
doi_str_mv 10.1007/s00521-018-3912-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384393766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384393766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bc9fc7b40bdbcbc60a8b3a2a2636d35ed0a3d5e2f18fc7eef91a537d71bb89c53</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC5-qkk7TpTVnWD1jwoueQpMmSpV8mXWH_vVkqePI0MPO878BDyC2FewpQP0QAXtICqCiwoWXBzkhGGWKBwMU5yaBh6VoxvCRXMe4BgFWCZ-Rx45w33g5zPqmgus52ue-nzvZppWY_Dvno8mCjDd-jD7kZ--kw-2GXx2OcbR-vyYVTXbQ3v3NFPp83H-vXYvv-8rZ-2hYGeTMX2jTO1JqBbrXRpgIlNKpSlRVWLXLbgsKW29JRkThrXUMVx7qtqdaiMRxX5G7pncL4dbBxlvvxEIb0UpYoGDZYV1Wi6EKZMMYYrJNT8L0KR0lBnkTJRZRMouRJlGQpUy6ZmNhhZ8Nf8_-hH87cbNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384393766</pqid></control><display><type>article</type><title>Efficient parallel implementation of reservoir computing systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alomar, M. L. ; Skibinsky-Gitlin, Erik S. ; Frasser, Christiam F. ; Canals, Vincent ; Isern, Eugeni ; Roca, Miquel ; Rosselló, Josep L.</creator><creatorcontrib>Alomar, M. L. ; Skibinsky-Gitlin, Erik S. ; Frasser, Christiam F. ; Canals, Vincent ; Isern, Eugeni ; Roca, Miquel ; Rosselló, Josep L.</creatorcontrib><description>Reservoir computing (RC) is a powerful machine learning methodology well suited for time-series processing. The hardware implementation of RC systems (HRC) may extend the utility of this neural approach to solve real-life problems for which software solutions are not satisfactory. Nevertheless, the implementation of massive parallel-connected reservoir networks is costly in terms of circuit area and power, mainly due to the requirement of implementing synapse multipliers that increase gate count to prohibitive values. Most HRC systems present in the literature solve this area problem by sequencializing the processes, thus loosing the expected fault-tolerance and low latency of fully parallel-connected HRCs. Therefore, the development of new methodologies to implement fully parallel HRC systems is of high interest to many computational intelligence applications requiring quick responses. In this article, we propose a compact hardware implementation for Echo-State Networks (an specific type of reservoir) that reduces the area cost by simplifying the synapses and using linear piece-wise activation functions for neurons. The proposed design is synthesized in a Field-Programmable Gate Array and evaluated for different time-series prediction tasks. Without compromising the overall accuracy, the proposed approach achieves a significant saving in terms of power and hardware when compared with recently published implementations. This technique pave the way for the low-power implementation of fully parallel reservoir networks containing thousands of neurons in a single integrated circuit.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3912-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Energy conservation ; Fault tolerance ; Field programmable gate arrays ; Gate counting ; Hardware ; Image Processing and Computer Vision ; Integrated circuits ; Machine learning ; Networks ; Neurons ; Original Article ; Parallel connected ; Power ; Power management ; Probability and Statistics in Computer Science ; Synapses</subject><ispartof>Neural computing &amp; applications, 2020-04, Vol.32 (7), p.2299-2313</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bc9fc7b40bdbcbc60a8b3a2a2636d35ed0a3d5e2f18fc7eef91a537d71bb89c53</citedby><cites>FETCH-LOGICAL-c359t-bc9fc7b40bdbcbc60a8b3a2a2636d35ed0a3d5e2f18fc7eef91a537d71bb89c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3912-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3912-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Alomar, M. L.</creatorcontrib><creatorcontrib>Skibinsky-Gitlin, Erik S.</creatorcontrib><creatorcontrib>Frasser, Christiam F.</creatorcontrib><creatorcontrib>Canals, Vincent</creatorcontrib><creatorcontrib>Isern, Eugeni</creatorcontrib><creatorcontrib>Roca, Miquel</creatorcontrib><creatorcontrib>Rosselló, Josep L.</creatorcontrib><title>Efficient parallel implementation of reservoir computing systems</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Reservoir computing (RC) is a powerful machine learning methodology well suited for time-series processing. The hardware implementation of RC systems (HRC) may extend the utility of this neural approach to solve real-life problems for which software solutions are not satisfactory. Nevertheless, the implementation of massive parallel-connected reservoir networks is costly in terms of circuit area and power, mainly due to the requirement of implementing synapse multipliers that increase gate count to prohibitive values. Most HRC systems present in the literature solve this area problem by sequencializing the processes, thus loosing the expected fault-tolerance and low latency of fully parallel-connected HRCs. Therefore, the development of new methodologies to implement fully parallel HRC systems is of high interest to many computational intelligence applications requiring quick responses. In this article, we propose a compact hardware implementation for Echo-State Networks (an specific type of reservoir) that reduces the area cost by simplifying the synapses and using linear piece-wise activation functions for neurons. The proposed design is synthesized in a Field-Programmable Gate Array and evaluated for different time-series prediction tasks. Without compromising the overall accuracy, the proposed approach achieves a significant saving in terms of power and hardware when compared with recently published implementations. This technique pave the way for the low-power implementation of fully parallel reservoir networks containing thousands of neurons in a single integrated circuit.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Energy conservation</subject><subject>Fault tolerance</subject><subject>Field programmable gate arrays</subject><subject>Gate counting</subject><subject>Hardware</subject><subject>Image Processing and Computer Vision</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Neurons</subject><subject>Original Article</subject><subject>Parallel connected</subject><subject>Power</subject><subject>Power management</subject><subject>Probability and Statistics in Computer Science</subject><subject>Synapses</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMoWFd_gLeC5-qkk7TpTVnWD1jwoueQpMmSpV8mXWH_vVkqePI0MPO878BDyC2FewpQP0QAXtICqCiwoWXBzkhGGWKBwMU5yaBh6VoxvCRXMe4BgFWCZ-Rx45w33g5zPqmgus52ue-nzvZppWY_Dvno8mCjDd-jD7kZ--kw-2GXx2OcbR-vyYVTXbQ3v3NFPp83H-vXYvv-8rZ-2hYGeTMX2jTO1JqBbrXRpgIlNKpSlRVWLXLbgsKW29JRkThrXUMVx7qtqdaiMRxX5G7pncL4dbBxlvvxEIb0UpYoGDZYV1Wi6EKZMMYYrJNT8L0KR0lBnkTJRZRMouRJlGQpUy6ZmNhhZ8Nf8_-hH87cbNA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Alomar, M. L.</creator><creator>Skibinsky-Gitlin, Erik S.</creator><creator>Frasser, Christiam F.</creator><creator>Canals, Vincent</creator><creator>Isern, Eugeni</creator><creator>Roca, Miquel</creator><creator>Rosselló, Josep L.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200401</creationdate><title>Efficient parallel implementation of reservoir computing systems</title><author>Alomar, M. L. ; Skibinsky-Gitlin, Erik S. ; Frasser, Christiam F. ; Canals, Vincent ; Isern, Eugeni ; Roca, Miquel ; Rosselló, Josep L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bc9fc7b40bdbcbc60a8b3a2a2636d35ed0a3d5e2f18fc7eef91a537d71bb89c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Energy conservation</topic><topic>Fault tolerance</topic><topic>Field programmable gate arrays</topic><topic>Gate counting</topic><topic>Hardware</topic><topic>Image Processing and Computer Vision</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Neurons</topic><topic>Original Article</topic><topic>Parallel connected</topic><topic>Power</topic><topic>Power management</topic><topic>Probability and Statistics in Computer Science</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alomar, M. L.</creatorcontrib><creatorcontrib>Skibinsky-Gitlin, Erik S.</creatorcontrib><creatorcontrib>Frasser, Christiam F.</creatorcontrib><creatorcontrib>Canals, Vincent</creatorcontrib><creatorcontrib>Isern, Eugeni</creatorcontrib><creatorcontrib>Roca, Miquel</creatorcontrib><creatorcontrib>Rosselló, Josep L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomar, M. L.</au><au>Skibinsky-Gitlin, Erik S.</au><au>Frasser, Christiam F.</au><au>Canals, Vincent</au><au>Isern, Eugeni</au><au>Roca, Miquel</au><au>Rosselló, Josep L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient parallel implementation of reservoir computing systems</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>7</issue><spage>2299</spage><epage>2313</epage><pages>2299-2313</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Reservoir computing (RC) is a powerful machine learning methodology well suited for time-series processing. The hardware implementation of RC systems (HRC) may extend the utility of this neural approach to solve real-life problems for which software solutions are not satisfactory. Nevertheless, the implementation of massive parallel-connected reservoir networks is costly in terms of circuit area and power, mainly due to the requirement of implementing synapse multipliers that increase gate count to prohibitive values. Most HRC systems present in the literature solve this area problem by sequencializing the processes, thus loosing the expected fault-tolerance and low latency of fully parallel-connected HRCs. Therefore, the development of new methodologies to implement fully parallel HRC systems is of high interest to many computational intelligence applications requiring quick responses. In this article, we propose a compact hardware implementation for Echo-State Networks (an specific type of reservoir) that reduces the area cost by simplifying the synapses and using linear piece-wise activation functions for neurons. The proposed design is synthesized in a Field-Programmable Gate Array and evaluated for different time-series prediction tasks. Without compromising the overall accuracy, the proposed approach achieves a significant saving in terms of power and hardware when compared with recently published implementations. This technique pave the way for the low-power implementation of fully parallel reservoir networks containing thousands of neurons in a single integrated circuit.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3912-4</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-04, Vol.32 (7), p.2299-2313
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2384393766
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Energy conservation
Fault tolerance
Field programmable gate arrays
Gate counting
Hardware
Image Processing and Computer Vision
Integrated circuits
Machine learning
Networks
Neurons
Original Article
Parallel connected
Power
Power management
Probability and Statistics in Computer Science
Synapses
title Efficient parallel implementation of reservoir computing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20parallel%20implementation%20of%20reservoir%20computing%20systems&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Alomar,%20M.%20L.&rft.date=2020-04-01&rft.volume=32&rft.issue=7&rft.spage=2299&rft.epage=2313&rft.pages=2299-2313&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3912-4&rft_dat=%3Cproquest_cross%3E2384393766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384393766&rft_id=info:pmid/&rfr_iscdi=true