Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method
This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios,...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-03, Vol.9 (3), p.532 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 532 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Jang, Eunhwa Banerjee, Priyanshu Huang, Jiyuan Holley, Rudolph Gaskins, John T. Hoque, Md Shafkat Bin Hopkins, Patrick E. Madan, Deepa |
description | This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature. |
doi_str_mv | 10.3390/electronics9030532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383857343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383857343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a9be7ee851aac5b1bd125319ecb26d6115dcfa37d927145b40101eb28198ee4e3</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsNT-AU8LnqP7kTTZo4bUCtV6aM9hs5k0W5Ldurs5FP-8CfUgOJd3YB7egQehe0oeORfkCTpQwVmjlReEk4SzKzRjJBWRYIJd_9lv0cL7IxlHUJ5xMkPfuxZcby8VWuFPcI11vTQKcGHaKXswAdsGf8gwONl1Z7xVanBOmwN-0ViaGuetDtZLg3Pbn6zXAfBKd73Hez9RhQF3OOOiabTSU9s7hNbWd-imkZ2HxW_O0X5V7PJ1tNm-vuXPm0hxKkIkRQUpQJZQKVVS0aqmLBkvoCq2rJeUJrVqJE9rwVIaJ1VMKKFQsYyKDCAGPkcPl96Ts18D-FAe7eDM-LJko4UsSXnMR4pdKOWs9w6a8uR0L925pKScPJf_PfMfDyF1zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383857343</pqid></control><display><type>article</type><title>Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jang, Eunhwa ; Banerjee, Priyanshu ; Huang, Jiyuan ; Holley, Rudolph ; Gaskins, John T. ; Hoque, Md Shafkat Bin ; Hopkins, Patrick E. ; Madan, Deepa</creator><creatorcontrib>Jang, Eunhwa ; Banerjee, Priyanshu ; Huang, Jiyuan ; Holley, Rudolph ; Gaskins, John T. ; Hoque, Md Shafkat Bin ; Hopkins, Patrick E. ; Madan, Deepa</creatorcontrib><description>This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9030532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth ; Cellulose ; Chitosan ; Curing ; Electrical resistivity ; Energy ; Epoxy resins ; Figure of merit ; Grain boundaries ; Grain size ; Heat conductivity ; High temperature ; Inks ; Low temperature ; Manufacturing ; Methods ; Microstructural analysis ; Packing density ; Particle size ; Performance enhancement ; Power factor ; Room temperature ; Screen printing ; Thermal conductivity ; Thermoelectric generators ; Thermoelectric materials ; Thermoelectricity ; Thick films ; Vortices ; Weight</subject><ispartof>Electronics (Basel), 2020-03, Vol.9 (3), p.532</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a9be7ee851aac5b1bd125319ecb26d6115dcfa37d927145b40101eb28198ee4e3</citedby><cites>FETCH-LOGICAL-c319t-a9be7ee851aac5b1bd125319ecb26d6115dcfa37d927145b40101eb28198ee4e3</cites><orcidid>0000-0002-0061-2715 ; 0000-0001-8622-5902 ; 0000-0002-3403-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Holley, Rudolph</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><title>Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method</title><title>Electronics (Basel)</title><description>This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature.</description><subject>Bismuth</subject><subject>Cellulose</subject><subject>Chitosan</subject><subject>Curing</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Epoxy resins</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Inks</subject><subject>Low temperature</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>Microstructural analysis</subject><subject>Packing density</subject><subject>Particle size</subject><subject>Performance enhancement</subject><subject>Power factor</subject><subject>Room temperature</subject><subject>Screen printing</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Thick films</subject><subject>Vortices</subject><subject>Weight</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkE1Lw0AQhhdRsNT-AU8LnqP7kTTZo4bUCtV6aM9hs5k0W5Ldurs5FP-8CfUgOJd3YB7egQehe0oeORfkCTpQwVmjlReEk4SzKzRjJBWRYIJd_9lv0cL7IxlHUJ5xMkPfuxZcby8VWuFPcI11vTQKcGHaKXswAdsGf8gwONl1Z7xVanBOmwN-0ViaGuetDtZLg3Pbn6zXAfBKd73Hez9RhQF3OOOiabTSU9s7hNbWd-imkZ2HxW_O0X5V7PJ1tNm-vuXPm0hxKkIkRQUpQJZQKVVS0aqmLBkvoCq2rJeUJrVqJE9rwVIaJ1VMKKFQsYyKDCAGPkcPl96Ts18D-FAe7eDM-LJko4UsSXnMR4pdKOWs9w6a8uR0L925pKScPJf_PfMfDyF1zw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jang, Eunhwa</creator><creator>Banerjee, Priyanshu</creator><creator>Huang, Jiyuan</creator><creator>Holley, Rudolph</creator><creator>Gaskins, John T.</creator><creator>Hoque, Md Shafkat Bin</creator><creator>Hopkins, Patrick E.</creator><creator>Madan, Deepa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0061-2715</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid></search><sort><creationdate>20200301</creationdate><title>Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method</title><author>Jang, Eunhwa ; Banerjee, Priyanshu ; Huang, Jiyuan ; Holley, Rudolph ; Gaskins, John T. ; Hoque, Md Shafkat Bin ; Hopkins, Patrick E. ; Madan, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a9be7ee851aac5b1bd125319ecb26d6115dcfa37d927145b40101eb28198ee4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bismuth</topic><topic>Cellulose</topic><topic>Chitosan</topic><topic>Curing</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Epoxy resins</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Inks</topic><topic>Low temperature</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>Microstructural analysis</topic><topic>Packing density</topic><topic>Particle size</topic><topic>Performance enhancement</topic><topic>Power factor</topic><topic>Room temperature</topic><topic>Screen printing</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Thick films</topic><topic>Vortices</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Eunhwa</creatorcontrib><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Holley, Rudolph</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Eunhwa</au><au>Banerjee, Priyanshu</au><au>Huang, Jiyuan</au><au>Holley, Rudolph</au><au>Gaskins, John T.</au><au>Hoque, Md Shafkat Bin</au><au>Hopkins, Patrick E.</au><au>Madan, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><spage>532</spage><pages>532-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9030532</doi><orcidid>https://orcid.org/0000-0002-0061-2715</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-03, Vol.9 (3), p.532 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2383857343 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Bismuth Cellulose Chitosan Curing Electrical resistivity Energy Epoxy resins Figure of merit Grain boundaries Grain size Heat conductivity High temperature Inks Low temperature Manufacturing Methods Microstructural analysis Packing density Particle size Performance enhancement Power factor Room temperature Screen printing Thermal conductivity Thermoelectric generators Thermoelectric materials Thermoelectricity Thick films Vortices Weight |
title | Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20Performance%20Enhancement%20of%20Naturally%20Occurring%20Bi%20and%20Chitosan%20Composite%20Films%20Using%20Energy%20Efficient%20Method&rft.jtitle=Electronics%20(Basel)&rft.au=Jang,%20Eunhwa&rft.date=2020-03-01&rft.volume=9&rft.issue=3&rft.spage=532&rft.pages=532-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9030532&rft_dat=%3Cproquest_cross%3E2383857343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383857343&rft_id=info:pmid/&rfr_iscdi=true |