An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation

Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2020-04, Vol.59 (4), p.1315-1329
Hauptverfasser: Houshmand, Mahboobeh, Mohammadi, Zahra, Zomorodi-Moghadam, Mariam, Houshmand, Monireh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 4
container_start_page 1315
container_title International journal of theoretical physics
container_volume 59
creator Houshmand, Mahboobeh
Mohammadi, Zahra
Zomorodi-Moghadam, Mariam
Houshmand, Monireh
description Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through known communication links. In our previous study, an algorithm with an exponential complexity was proposed to optimize the number of qubit teleportations required for the communications between two partitions of a distributed quantum circuit (DQC). In this work, a genetic algorithm is used to solve the optimization problem in a more efficient way. The results are compared with the previous study and we show that our approach works almost the same with a remarkable speed-up. Moreover, the comparison of the proposed approach based on GA with a random search over the search space verifies the effectiveness of GA.
doi_str_mv 10.1007/s10773-020-04409-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383816415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383816415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-54e4bc3a18362505b79b59f836bf53005ed1aa79d974227f1d9047dba6009a403</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJk2ya47Kuf0BYhPUmhLRN1yzbpiapoJ_e1ArePA3D_ObNm4fQJYFrAiBuAgEhaAY5ZMAYyAyO0IxwkWeSC36MZjCOhGDFKToLYQ8AElgxQ6_LDq8_3GGI1nXaf-Jl33unqzccHd700bb2y3Y7vDUH0zsf9cjhlQsR2w7f2hC9LYdoavw86C4ObZq1_TBx5-ik0YdgLn7rHL3crberh-xpc_-4Wj5lFSUyZpwZVlZUk4Iucg68FLLkskld2XAKwE1NtBayloLluWhInbyLutSL9IVmQOfoatJN1t8HE6Lau8F36aTKaUELsmCEJyqfqMq7ELxpVO9tm35WBNSYoppSVCkq9ZOiGqXptBQS3O2M_5P-Z-sbrh91Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383816415</pqid></control><display><type>article</type><title>An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation</title><source>SpringerNature Complete Journals</source><creator>Houshmand, Mahboobeh ; Mohammadi, Zahra ; Zomorodi-Moghadam, Mariam ; Houshmand, Monireh</creator><creatorcontrib>Houshmand, Mahboobeh ; Mohammadi, Zahra ; Zomorodi-Moghadam, Mariam ; Houshmand, Monireh</creatorcontrib><description>Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through known communication links. In our previous study, an algorithm with an exponential complexity was proposed to optimize the number of qubit teleportations required for the communications between two partitions of a distributed quantum circuit (DQC). In this work, a genetic algorithm is used to solve the optimization problem in a more efficient way. The results are compared with the previous study and we show that our approach works almost the same with a remarkable speed-up. Moreover, the comparison of the proposed approach based on GA with a random search over the search space verifies the effectiveness of GA.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04409-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Elementary Particles ; Evolutionary algorithms ; Genetic algorithms ; Mathematical and Computational Physics ; Optimization ; Physics ; Physics and Astronomy ; Quantum computing ; Quantum Field Theory ; Quantum Physics ; Quantum teleportation ; Qubits (quantum computing) ; Theoretical</subject><ispartof>International journal of theoretical physics, 2020-04, Vol.59 (4), p.1315-1329</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-54e4bc3a18362505b79b59f836bf53005ed1aa79d974227f1d9047dba6009a403</citedby><cites>FETCH-LOGICAL-c319t-54e4bc3a18362505b79b59f836bf53005ed1aa79d974227f1d9047dba6009a403</cites><orcidid>0000-0003-3263-0325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04409-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04409-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Houshmand, Mahboobeh</creatorcontrib><creatorcontrib>Mohammadi, Zahra</creatorcontrib><creatorcontrib>Zomorodi-Moghadam, Mariam</creatorcontrib><creatorcontrib>Houshmand, Monireh</creatorcontrib><title>An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through known communication links. In our previous study, an algorithm with an exponential complexity was proposed to optimize the number of qubit teleportations required for the communications between two partitions of a distributed quantum circuit (DQC). In this work, a genetic algorithm is used to solve the optimization problem in a more efficient way. The results are compared with the previous study and we show that our approach works almost the same with a remarkable speed-up. Moreover, the comparison of the proposed approach based on GA with a random search over the search space verifies the effectiveness of GA.</description><subject>Circuits</subject><subject>Elementary Particles</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quantum teleportation</subject><subject>Qubits (quantum computing)</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJk2ya47Kuf0BYhPUmhLRN1yzbpiapoJ_e1ArePA3D_ObNm4fQJYFrAiBuAgEhaAY5ZMAYyAyO0IxwkWeSC36MZjCOhGDFKToLYQ8AElgxQ6_LDq8_3GGI1nXaf-Jl33unqzccHd700bb2y3Y7vDUH0zsf9cjhlQsR2w7f2hC9LYdoavw86C4ObZq1_TBx5-ik0YdgLn7rHL3crberh-xpc_-4Wj5lFSUyZpwZVlZUk4Iucg68FLLkskld2XAKwE1NtBayloLluWhInbyLutSL9IVmQOfoatJN1t8HE6Lau8F36aTKaUELsmCEJyqfqMq7ELxpVO9tm35WBNSYoppSVCkq9ZOiGqXptBQS3O2M_5P-Z-sbrh91Ow</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Houshmand, Mahboobeh</creator><creator>Mohammadi, Zahra</creator><creator>Zomorodi-Moghadam, Mariam</creator><creator>Houshmand, Monireh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3263-0325</orcidid></search><sort><creationdate>20200401</creationdate><title>An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation</title><author>Houshmand, Mahboobeh ; Mohammadi, Zahra ; Zomorodi-Moghadam, Mariam ; Houshmand, Monireh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-54e4bc3a18362505b79b59f836bf53005ed1aa79d974227f1d9047dba6009a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Elementary Particles</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quantum teleportation</topic><topic>Qubits (quantum computing)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houshmand, Mahboobeh</creatorcontrib><creatorcontrib>Mohammadi, Zahra</creatorcontrib><creatorcontrib>Zomorodi-Moghadam, Mariam</creatorcontrib><creatorcontrib>Houshmand, Monireh</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houshmand, Mahboobeh</au><au>Mohammadi, Zahra</au><au>Zomorodi-Moghadam, Mariam</au><au>Houshmand, Monireh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>59</volume><issue>4</issue><spage>1315</spage><epage>1329</epage><pages>1315-1329</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through known communication links. In our previous study, an algorithm with an exponential complexity was proposed to optimize the number of qubit teleportations required for the communications between two partitions of a distributed quantum circuit (DQC). In this work, a genetic algorithm is used to solve the optimization problem in a more efficient way. The results are compared with the previous study and we show that our approach works almost the same with a remarkable speed-up. Moreover, the comparison of the proposed approach based on GA with a random search over the search space verifies the effectiveness of GA.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04409-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3263-0325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2020-04, Vol.59 (4), p.1315-1329
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2383816415
source SpringerNature Complete Journals
subjects Circuits
Elementary Particles
Evolutionary algorithms
Genetic algorithms
Mathematical and Computational Physics
Optimization
Physics
Physics and Astronomy
Quantum computing
Quantum Field Theory
Quantum Physics
Quantum teleportation
Qubits (quantum computing)
Theoretical
title An Evolutionary Approach to Optimizing Teleportation Cost in Distributed Quantum Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evolutionary%20Approach%20to%20Optimizing%20Teleportation%20Cost%20in%20Distributed%20Quantum%20Computation&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Houshmand,%20Mahboobeh&rft.date=2020-04-01&rft.volume=59&rft.issue=4&rft.spage=1315&rft.epage=1329&rft.pages=1315-1329&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04409-0&rft_dat=%3Cproquest_cross%3E2383816415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383816415&rft_id=info:pmid/&rfr_iscdi=true